

MODUL HANDBOOK

Ba Physics

DEPARTEMENT OF PHYSICS FACULTY OF MATHEMATICS & NATURAL SCIENCES IPB UNIVERSITY 2024

Foreword

We express our gratitude to the presence of God Almighty for His grace and blessings so that this Module Handbook for the Bachelor's Degree in Physics Study Program can be compiled and published. This book is compiled as a learning guide for students, lecturers, and related parties in order to support the implementation of the educational process in the Bachelor's Degree in Physics Study Program, IPB University.

The Module handbook is designed to reflect the program educational objectives (PEO) and Program Learning Outcomes (PLO) of Bachelor's Degree in Physics Study Program, and is compiled based on the latest curriculum in accordance with the Indonesian National Qualification Framework (KKNI) and higher education quality standards. Each module contains learning objectives, course descriptions, materials to be discussed, teaching methods, and evaluation systems, which are expected to support the achievement of the desired graduate competencies.

We hope that this book can be a useful guideline for lecturers in designing an effective and efficient learning process. For students, this book is expected to help them understand the direction and objectives of each course so that they are more focused in planning their studies.

We would like to express our gratitude to all parties who have contributed to the preparation of this book, including the team of lecturers, administrative staff, and leaders of the Bachelor's Degree in Physics Study Program. We greatly appreciate constructive criticism and suggestions for the improvement and refinement of this book in the future.

Finally, we hope that this book can provide the greatest possible benefits for the advancement of education in the Bachelor's Degree in Physics Study Program, as well as support the achievement of superior and competent graduates in the field of physics.

Table of Contents

Foreword	1
Module Handbook – Religion	4
Module Handbook – Physics for Science and Technology	6
Module Handbook – Innovative Agriculture	8
Module Handbook – Math and Logical Thinking	10
Module Handbook – Sports and Arts	15
Module Handbook – Economics	17
Module Handbook – Sociology	19
Module Handbook – Chemistry of Science and Technology	22
Module Handbook – Pancasila	24
Module Handbook – English	31
Module Handbook – Calculus 1	34
Module Handbook – Statistics and Data Analysis	36
Module Handbook – Computational Thinking	38
Module Handbook – Newtonian Mechanics	40
Module Handbook – Mathematical Physics	42
Module Handbook – Analogue Electronics	44
Module Handbook – Thermodynamics	46
Module Handbook – Waves	48
Module Handbook – Electrostatics	50
Module Handbook – Langrangian-Hamiltonian Mechanics	52
Module Handbook – Advanced Mathematical Physics	54
Module Handbook – Digital Electronics	56
Module Handbook – Computational Physics	58
Module Handbook – Advanced Physics Experiment	61
Module Handbook – Biophysics	63
Module Handbook – Electrodynamics	66
Module Handbook – Quantum Physics	69
Module Handbook – Statistical Physics	72
Module Handbook – Optics and Photonics	74
Module Handbook – Int. Based Instrumentation System	76
Module Handbook – Complex System	78
Module Handbook – Biomaterials	80

Module Handbook – Material Characterization Methods	82
Module Handbook – Sensors and Transducer	85
Module Handbook – Solid State Physics	87
Module Handbook – Theory of Relativity	90
Module Handbook – Advanced Quantum Physics	93
Module Handbook – Atomic and Molecular Physics	95
Module Handbook – Nanophysics	97
Module Handbook – Nuclear and Particle Physics	99
Module Handbook – Scientific Writing Method Physics	102
Module Handbook – Enrichment Courses	104
Module Handbook – Capstone in Physics I	107
Module Handbook – Thematic-Community Service	109
Module Handbook – Capstone in Physics 2	111
Module Handbook – Colloquium	113
Module Handbook – Seminar	115
Module Handbook – Final Year Project	117

Module Handbook – Religion

Module designation	Religion			
Semester(s) in which the module is taught	1st and 2nd (odd and even) Semester			
Person responsible for the module	Dr. Hamzah, M.Si			
Language	Indonesian			
Relation to curriculum	Compulsory Courses for undergraduate program in IPB University			
Teaching methods	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.			
	Total workload: 135.99 hours/semester			
	Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester			
Workload (incl. contact hours, self- study hours)	Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 4.39 hours x 16 weeks = 70.39 hours/semester			
Credit points	3 x 1.67 ECTS = 5.01 ECTS			
Required and recommended prerequisites for joining the module	 Registered in this course Minimum 80% attendance in this course 			
Module objectives/intended learning outcomes	 Able to explain the urgency of Islamic education and apply manners in seeking knowledge. (application) Able to explain Islamic teachings comprehensively in the fields of Aqidah, Sharia, Morals and Da'wah and be able to correct erroneous understandings of Islamic teachings. (comprehension) Able to explain the concept of science in Islam and eliminate the dichotomous attitude that opposes science and Islam. (understanding) Able to explain the relationship between humans and religion in Islam, realize the truth of Islam by being tolerant of other religions Able to be honest, disciplined, responsible and anticorruption. Able to read the Koran properly and diligently worship and carry out various activities according to Islamic rules 			

Content	Courses that comprehensively discuss the main points of Islamic religious teachings to shape the character and literacy of Muslim scientists as a foundation for the development and implementation of science for the progress of the state and nation. This course consists of material on Islam and Knowledge, Man and Religion, Islamic Faith, Islamic Sharia, Morals and Da'wah. This course also discusses the applicability of Islamic values in everyday life.					
Examination forms	Written exam					
Study and examination requirements	 Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice 4. Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, language), (b) Being on time, (c) 					
Reading list	 Al-Qur'an and Translations, Islamic Religious Education Guidebook compiled by TIM PAI-IPB Additional Readings; Miftah Faridz, 1999. Pokok-pokok ajaran Islam karya Mifta Faridz, Penerbit Pustaka. Jakarta Yunahar Ilyas.1999. Kuliah Akhlak. LIPPI 3. Yusuf Qardhawy,1997.Pengantar Kajian Islam (terjmhn.). Pustaka Kautsar. Jakarta. Hamzah Yaqub,1996. Etika Islam. CV. Diponegoro. Bandung Yunahar Ilyas.2002. Kuliah Aqidah Islam. LPDI UMY. Yusuf Qardhawy.1996. Tahuhid dan Fenomena Kemusyrikan (terjmhn). Pustaka Progresif. Surabaya Shalih bin Fauzan. 1999. Kitab Tauhid I (terjemahan).Darul Haq. Jakarta. Ismail Fauzi. Al- Islam dan Ilmu Pengetahuan 					

Module Handbook – Physics for Science and Technology

Module designation	Physics for Science and Technology				
Semester(s) in which the module is taught	1st (Odd) Semester				
Person responsible for the module	Department of Physic				
Language	Indonesian and English				
Relation to curriculum	Compulsory Courses for undergraduate program in IPB University				
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.				
Workload	Total workload: 135.99 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 4.39 hours x 16 weeks = 70.39 hours/semester				
Credit points	3 x 1.67 ECTS = 5.01ECTS				
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course 				
Recommended prerequisites	-				
Module objectives/intended learning outcomes	Student is able to use various physical formulations in the scope of solving simple physics problems and applying them to other fields.				
Content	This course is taught to provide students with insight into the scope of mechanics, vibration waves, dynamics, electricity, electromagnetism and modern physics as well as providing a basis that is suitable for students who need basic physics.				
Examination forms	Written exam				
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice				

	<i>Affective:</i> Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and visual presentation material
Reading list	 John D. Cutnell, Kenneth W. Johnson. 2012, Physics.12th Ed. John Wiley and Sons, USA 2. Paul A Tipler, Physics for Science and Engineering, Erlangga Publishers, Volumes 1 and 2, 1998 Sidikrubadi Pramudito, Diktat Physics PPKU, 2019, IPB Press.

Module Handbook – Innovative Agriculture

Module designation	Innovative Agriculture				
Semester(s) in which the module is taught	1st Semester				
Person responsible for the module	Prof. Dr. Ir. Hadi Susilo Arifin, M.S.				
Language	Indonesian and English				
Relation to curriculum	Compulsory module for undergraduate program at IPB University				
Type of teaching, contact hours	Classical lecture using PowerPoint and module. Independent learning using class.ipb.ac.id.				
Workload	Total workload: 90.66 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25. hours/semester Independent study and assignment: 4.066 hours x 1 weeks = 65.06 hours/semester				
Credit points	2 x 1.67 ECTS = 3.34 ECTS				
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course 				
Recommended prerequisites	-				
Module objectives/ intended learning outcomes	After taking this course, students is able to explain agriculture in a broad sense and the supporting sciences.				
Content	This course is designed and structured to take IPB University students to the world of agriculture in abroad sense.				
Examination forms	Written exam				
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizze Assignments Psychomotor: Practice Affective: Assessed from the element /variable achievement, namely (a) Contributions (attendanc active, role, initiative, and language), (b) Being on tim (c) Effort				

Media employed	Classical teaching tools with white board and power point presentation
Reading list	 AHN: Buku PIP Author AHN (Book 1-Soft File) KM: Buku Kumpulan Makalah (Book 2-Soft File) TGM: Buku Tantangan Generasi Muda (Hard File)

Module Handbook – Math and Logical Thinking

Module designation	Math and Logical Thinking			
Semester(s) in which the module is taught	1st Semester			
Person responsible for the module	Windiani Erliana			
Lecturer	Team Teaching from Departmant of Mathematic			
Language	Indonesian			
Relation to curriculum	Compulsory module for undergraduate program in IPB University			
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.			
Workload	Total workload: 135.99 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 4.39 hours x 16 weeks = 70.39 hours/semester			
Credit points	3 x 1.67 ECTS = 5.01 ECTS			
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course 			
Recommended prerequisites	-			
Module objectives/intended learning outcomes	 Students can connect phenomena encountered in everyday life with Economics Students can analyze the behavior of producers and consumers in the VUCA era and analyze the potential impact of policies issued by the government, especially policies in the agricultural sector (in a broad sense), both impacts related to consumers, producers, sectoral, and the macro economy. Students are able to apply knowledge related to basic economic theory in solving problems or formulating decisions in various applied fields. Students are able to express opinions and respect the opinions of others about knowledge of Economics and its applications in everyday life. 			

	5. Growing a sense of love for the motherland in students after learning how to allocate limited resources in order to meet the needs of all Indonesian people.					
Content	This Mathematics and Logical Thinking course discusses the basic concepts of mathematics and some of the concepts used for applications that include introductory concepts to mathematical logic (informal error/fallacy in arguing), Propositional Logic, Predicate Logic, Argument, Proof with the Principle of Mathematical Induction mathematics, Combinatorics Theory (Permutation, Combination, Distribution), Sistem Linear Equation (solution, modeling & its application), Functions as a whole as a model (linear function, quadratic, piecemeal, exponential, meta- rhythm). Linear Programming and Its Applications					
Examination forms	Written exam					
Study and examination requirements and forms of examination Media employed	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, and language), (b) Being on time, (c) Effort.					
	point presentation					
Reading list	 Diktat Pengantar Matematika. 2019. Departemen Matematika IPB. G.C. Berresford, A.M. Rockett. 2013. Brief Applied Calculus, 6th Ed, Cencage Learning. Rosen, KH. 2019. Discrete Mathematics and Its Applications. 8th Edition. Mc GrawHill, New York. Copi IM, Cohen C, McMahon, K. 2011. Introduction to Logic, 14th Edition. Pearson Prentice Hall. M.L. Lial, R.N. Greenwell, N.P. Ritchie.2017. Calculus with Applications, 11th Ed. Global Edition, Pearson. M.S. Engel, Bedford. 2014. With Good Reason: An Introduction to Informal Editation. 					
	 Introduction to Informal Fallacies. 7. P.D. Magnus. 2014. Forall χ-An Introduction to Formal Logic. 					

		H	ttp://www	.fecundit	ty.com/lo	gic.	
8.	PR	Ρ.	Morash.	1987.	Bridge	to	Abstract
	Mat	hem	natics.				
	Ran	dom	House Inc.	New Yo	rk.		
	9. R	.P. C	Grimaldi. 20	003. Disc	rete and	Com	binatorial
	Math	ema	itics. 5th Ed	dition. Pe	earson Ad	ddiso	n Wesley,
	Bosto	on.					
	10. R	.N	Aufman, J	S. Locku	vood, R.E). Na	ition, D.K.
	Clegg	1.	2008. N	1athema	tical T	hinki	ing and
	Quan	titat	tive Reaso	oning. I	Houghton	n M	ifflin Co.
	Bosto	on.					
	11. T	an .	ST. 2008.	College	Mathen	natic	s for the
	Mana	ager	ial, Life, d	and Soc	cial Scier	nces,	7th Ed,
	Thor	ison,	, Belmont.				
	12. T Intro	aha duct	HA. 201 ion. 10 th Ed	17. Ope . Pearsol	erations n, Edinbu	Res rg	earh: An

	Module	Handbook	_	Indonesian	Languange
--	--------	----------	---	------------	-----------

Module designation	Indonesian Language
Courses, if applicable	IPB106 Indonesian Language
Semester(s) in which the module is taught	Odd/Even Semester
Person responsible for the module	-
Lecturer	Team Teaching
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 90.66 hours/semester Lecture Class: 0.8 hours x 16 weeks = 12.8 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 2.36 hours x 16 weeks = 37.86 hours/semester
Credit points	2 x 1.67 ECTS = 3.34 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	 be able to explain the concept of language, the history of the Indonesian language, the position of the Indonesian language, the functions of the Indonesian language; able to explain and identify aspects of language, starting from the simple level, namely spelling, vocabulary, sentences, paragraphs, to types of text; able to correct language errors; be able to use written and spoken Indonesian in accordance with the rules; mastering the skills and application of the steps for writing scientific papers which include the pre-writing, writing, and editing stages; able to carry out simple research and then compile it into a paper in accordance with the field of knowledge; as well as

	7. able to communicate verbally properly and correctly and be able to present research results.
Content	This course contains material that enhances a sense of national love in the form of the history of the Indonesian language. Material related to improving language skills in the form of effective sentence writing includes spelling, word choice, and structure. The material for reading and writing skills is in the form of techniques for composing paragraphs, composing texts, selecting readings, critical thinking, and compiling scientific papers. The material for oral language skills is in the form of an oral presentation. Student work in the form of outline paragraphs, paragraphs, types of text, slides, videos, and simple research papers.
Examination forms	Written exam
	Cognitive: Midterm exam, Final exam, Quizzes, Assignments
Study and examination requirements and forms of examination	Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, language), (b) Being on time, (c) Effort.
Reading List	-

Module Handbook – Sports and Arts

Module designation	Sports and Arts
Semester(s) in which the module is taught	1st/2nd Semesters
Person responsible for the module	Team Teaching
Language	Indonesian and English
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Type of teaching: Face to face lecture
Workload	Total workload: 45,33 hours/semester Practical Class: 2,5 hours x 16 weeks = 40 hours/semester Independent study and assignment = 0.33 x 16 week =5.33 hours/semester
Credit points	1 x 1.67 ECTS = 1.67 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	
Module objectives/intended learning outcomes	 Students able to: 1. Mastering theoretical and practical concepts in sports in depth, and being able to formulate movement activities, especially in daily life or physical activity; 2. Show respect, excellence, friendship; 3. Develop and apply forms of sports training in everyday life.
Content	This course discusses and practices comprehensively regarding physical activity and movement in sports. Not only that, this course also provides students with experience in practicing, modifying, developing and evaluating sports techniques according to the material. In lectures various theoretical and practical approaches are discussed, so as to develop individuals emotionally and intellectually in practice including physical activity, formation of movement, character formation, and development of physical conditions.
Examination forms	Written exam

Examination forms	Written exam
Reading list	Bompa, T. O. (2009). Disiplin Ilmu Pendukung dalam Teori dan Metodologi Latihan. Jakarta: Rajawali. Bompa, T. O. (1999). Perioderization: theory of methodology of training, 4th ed. (champaign. IL: Human Kinetic). 258

Module Handbook – Economics

Module designation	Economics
Semester(s) in which the module is taught	1st/2nd Semester
Lecturer	Team Teaching from Faculty of Economy and Management
Language	Indonesian
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 90.66 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Independent study and assignment: 4.066 hours x 16 weeks = 65.06 hours/semester
Credit points	2 x 1.67 ECTS = 3.34 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	After attending this course, student is able to understand of economics as a branch of science, understand the behavior of households, companies and markets in economic decision making, understand macroeconomics, problems and the actual conditions of Indonesian macroeconomics.
Content	This course aims to encourage students to actualize themselves through theory-based creativity in the process of making economic decisions in various applied fields including agriculture, marine and tropical biosciences and to motivate students to carry out various innovations according to their scientific fields in overcoming resource scarcity. The theoretical basis that will be presented begins with providing insight to students about the phenomenon of resource scarcity in various aspects of life and the role of technology in overcoming resource scarcity, consumer and producer

	behavior in allocating resources efficiently in the VUCA era, the role of the digital economy in overcoming resource scarcity, pricing strategies in dealing with competition, indicators of national economic performance, as well as the government's role in stabilizing the economy (price, fiscal and monetary policies) so as to create social welfare
Examination forms	Written exam
	Cognitive: Midterm exam, Final exam, Quizzes, Assignments
Study and examination requirements	Psychomotor: Practice
and forms of examination	Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, and language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
	1. Books for lecture class:
Reading list	 Lipsey. R. G., P. O Steiner, and D. D. Purpis. 1987. Economics. Harper International Edition. Books for practical class: Penuntun Responsi Ekonomi Umum. 2013. Departemen Ilmu Ekonomi (IE), Fakultas Ekonomi dan Manajemen (FEM). IPB. Lipsey. R. G., P. O Steiner, and D. D. Purpis. 1987. Economics. Harper International Edition. 3 Gregory, M. 2006. Principles of Economics
	(Pengantar Ekonomi Mikro) Edisi 3. Salemba Empat.

Module Handbook – Sociology

Module designation	Sociology
Semester(s) in which the module is taught	Odd/Even Semester
Lecturer	Team Teaching from Faculty of Human Ecology
Language	Indonesian
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 90.66 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Independent study and assignment: 4.066 hours x 16 weeks = 65.06 hours/semester
Credit points	2 x 1.67 ECTS = 3.34 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	 Students are able to describe the definition of the concept of sociology [reflected in the main points] Students are able to provide examples of social facts based on empirical observations in Indonesia with sociological concepts. Students are able to analyze social facts and empirical observations in Indonesia with sociological concepts to identify and solve social problems Students have an attitude of curiosity, critical, inclusive, and concerned about social justice. Mastering the theoretical concepts of certain fields of knowledge and skills in general and the theoretical concepts of special sections in the fields of knowledge and skills in depth (KKNI for S1)

Content	Topics that will be discussed in the course include (1) Understanding Society Sociologically; (2) Social Interaction: Building Cooperation and Functioning Social Conflict; (3) Community Portrait seen through the Lens of Social Structure; (4) Diversity and Existence of Indonesian Culture; (5) Dynamics of Social Institutions; (6) Group Dynamics in a Changing Society (7) Bureaucracy and Corruption Prevention; (8) Power and Authority; (9) Communication knits Social Relations, (10) Patterns of Ecological Adaptation; (11) Ecological Creation and Ecological Modernization (12) Gender, Equality and Social Inclusion and (13) Social Change in the Flow of Globalization
Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
Reading lists	 Berger PL. 1963. Invitation to Sociology. A Humanistic Perspective. New York: Anchor Books. Brym RJ. 2009. Sociology as a Life or Death Issue. Canada: Nelson Education. Charon JM. 1980. The Meaning of Sociology. US: Alfred Publishing Co. Inc. America. Creswell JW. 2012. Research Design: Pendekatan Kualitatif, Kuantitatif dan Mixed. Yogyakarta: Pustaka Pelajar. Durkheim E. 1966. The Rules of Sociological Method. Ed ke-8. Terjemahan oleh Sarah A. Solovay and John H. Mueller. New York and CollierMacMillan Limited. London: The Free Press. Harper CL. 1989. Exploring Social Change. Englewood Cliffs, New Jersey, USA: PrenticeHall Publisher. Kinseng RA. 2017. Struktugensi: sebuah teori tindakan. Sodality: Jurnal Sosiologi Pedesaan. 5(2): 127137.

8. Plummer K. 2010. Sociology the Basics. London: Routledge.
9. Sibeon R. 2004. Rethinking Social Theory. London, Thousand Oaks, New Delhi: SAGE Publications.
 Suseno FM. 1999. Pemikiran Karl Marx Dari Sosialisme Utopis ke Perselisihan Revisionisme. Jakarta: Gramedia Pustaka Utama.
11. Wallace RA, Wolf A. 2006. Contemporary Sociological Theory. Expanding the Classical Tradition. Ed ke-6, Prentice Hall, New Jersey: Pearson.
12. Weber M. 1974. The Theory of Social and Economic Organization. New York: The Free Press

Module Handbook – Chemistry of Science and Technology

Module designation	Chemistry of Science and Technology
Semester(s) in which the module is taught	1st Semester
Lecturer	Team Teaching
Language	Indonesian
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 135.99 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 4.39 hours x 16 weeks = 70.39 hours/semester
Credit points	3 x 1.67 ECTS = 5.01 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	 Be able to understand Chemistry as the Central of Science for science and technology in the fields of agriculture, marine and tropical biosciences Be able to apply the concept of chemistry to design the structure, dynamics and rate of change in living systems related to energy exploration for the future. Able to communicate and express opinions and
	3. Able to communicate and express opinions and ideas logically to solve a problem and respect the opinions of others.
	4. Able to collaborate and cooperate through group work with due regard to safety, occupational health and environmental aspects

Content	This course encourages students to actualize Chemistry as a Central of Science for the foundation of science and technology in the fields of agriculture, marine and tropical biosciences. The theoretical foundation will begin by providing insight into the contribution of chemistry in the field of world technology, its relationship with other sciences, efficiency of atoms for product synthesis, dynamics and rate of change of products and utilization of products for the development of technology for the welfare of living things.
Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, and language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
Reading list	Suchocki J. 2007. Conceptual Chemistry: Understanding Our World of Atoms and Molecules. Ed. Ke-3. San Fransisco (US): Pearson Benjamin Cummings.

Module Handbook – Pancasila

Module designation	Pancasila
Semester(s) in which the module is taught	1st/2nd Semester
Person responsible for the module	Team Teaching
Language	Indonesian and English
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Type of teaching: Face to face lecture
Workload	Total workload: 45,33 hours/semester Lecture Class: 0,8 hours x 16 weeks = 12,8 hours/semester Independent study and assignment: 2,033 x 16 = 32,53 hours/semester
Credit points	1 x 1.67 ECTS = 1.67 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	students able to: build self-awareness as the next generation of the Indonesian nation that carries the mandate and human nature to always practice the values of Pancasila through the ability to interpret the essence of historical values (C2), the position and nature of the Pancasila precepts (C2), being proactive about the actual problems of the nation and state (C3), as well as applying Pancasila values in the mastery and development of science and technology for the development and progress of the Indonesian nation (C4.
Content	The Pancasila Education course as a compulsory subject aims to build and foster student attitudes, behavior, mindset, insight, knowledge, and skills that are in accordance with Pancasila values (religious, humanist, nationalist, cooperative, and just) through understanding Pancasila (1) historically, namely the history of the development of Pancasila thought; (2) philosophically, including Pancasila as a philosophical

	system, ethical system, national view of life, national ideology, the basis of the state; (3) juridically, regarding the position of Pancasila in the laws and regulations, (4) Pancasila as a National Development Paradigm in the Political, Economic, Socio-Cultural, Defense and Security fields, and (5) The millennial generation action program in advancing the nation state of Indonesia (Actualization of the character of Pancasila values) in the form of assignments to make individual papers with the theme
	which can Improve the Quality of Life in Society, Nation and State, including religious values (Religiosity), family values (humanist), harmony values (nationalist)), social values (cooperating), and justice values.
Examination forms	Written exam
Reading list	 Abdullah, Rozali, 1984, Pancasila sebagai Dasar Negara dan Pandangan Hidup Bangsa, CV. Rajawali, Jakarta. Ali, As'ad Said, 2009, Negara Pancasila Jalan Kemaslahatan Berbangsa, Pustaka LP3ES, Jakarta. Anshoriy, HM. Nasruddin, 2008, Bangsa Gagal: Mencari Identitas Kebangsaan, LKiS, Yogyakarta. Bakry, Noor Ms., 2010, Pendidikan Pancasila, Pustaka Pelajar, Yogyakarta. Kaelan, 2000, Pendidikan Pancasila, Paradigma, Yogyakarta. Dodo, Surono dan Endah (ed.), 2010, Konsistensi Nilai-Nilai Pancasila dalam UUD 1945 dan Implementasinya, PSP-Press, Yogyakarta. Kaelan, 2012, Problem Epistemologis Empat Pilar Berbangsa dan Bernegara, Paradigma, Yogyakarta. Kusuma, A.B., 2004, Lahirnya Undang-Undang Dasar 1945 Padan Pancasita Fakultas Hukum
	 Dasar 1943, Badam Penerbit Pakaltas Pakaltas Pakaltas Pakaltas Pakaltas Pakaltas Pakaltas Pakaltas Pakaltas Pancasila, PT Gramedia Pustaka Utama, Jakarta. 10. Nurdin, Encep Syarief, 2002, Konsep-Konsep Dasar Ideologi: Perbandingan Ideologi Besar Dunia, CV Maulana, Bandung. 11. Rindjin, Ketut, 2012, Pendidikan Pancasila untuk Perguruan Tinggi, PT. Gramedia Pustaka Utama, Jakarta. 12. Zubair Achmad Charris 1990 Kuliah Etika
	Rajawali Pers, Jakarta.

Module Handbook – Civic Education

Module designation	Civic Education
Semester(s) in which the module is taught	1st Semester
Lecturer	Team Teaching
Language	Indonesian and English
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Type of teaching: Face to face lecture
Workload	Total workload: 45,33 hours/semester Lecture Class: 0,8 hours x 16 weeks = 12,8 hours/semester Independent study and assignment: 2,033 x 16 = 32,53 hours/semester
Credit points	1 x 1.67 ECTS = 1.67 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	 Student able: Understand the four basic consensus and the importance of state defense awareness (C2). Understanding the dynamics of implementing the 1945 Constitution and changes to the constitutional system (C2). Applying the principles of democratization, regional autonomy, good governance, and anticorruption character as an effort to improve the Indonesian nation's self-image in facing changes in the world order, and management of national resources for the prosperity of the Indonesian nation state (C3) Identifying problems with the National Security conception approach and increasing national awareness of various threats in order to uphold the existence of the Unitary State of the Republic of Indonesia (C4).

Content	The Citizenship Education course provides an understanding of the importance of awareness of defending the country for the next generation of the Indonesian nation in fighting for and maintaining the integrity of the Unitary State of the Republic of Indonesia through the mastery and application of science and technology based on 4 basic consensus, namely the values of Pancasila, the 1945 Constitution of the Republic of Indonesia, Unity in Diversity, and the Unitary State of the Republic of Indonesia. Realizing sustainable national development based on archipelago vision, national resilience and national vigilance in harmony with the principles of democratization, regional autonomy, good governance and anti-corruption character.
Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, and language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation

Reading list	1. Rangkuti, P.A.,2016, Membangun Kesadara Bela Negara, Bogor : (edisi ke2) IPB Press.
	2. Mahmuzar, 2010, Sistem Pemerintaha Indonesia : Sebelum dan Sesudah Amandeme UUD 1945, Jakarta : Nusa Media.
	3. Syakrani,2009, Implementasi Otonomi Daera dalam Perspektif Good Governance, Jakarta Pustaka Pelajar.
	4. Pendidikan Kewarganegaraan untuk Pergurua Tinggi, Cet.1, Kemristek Dikti
	5. Pendidikan Anti Korupsi Untuk Perguruan Tingg Nanang T.Puspito, Marcella Elwina (edit) Kemendikbud: 2011
	6. Undang-Undang Dasar Negara Kesatua Republik Indonesia tahun 1945 (yang tela diamandemen)
	7. Undang-Undang No. 12 tahun 2006 tentan Kewarganegaraan Republik Indonesia
	8. Undang-Undang No. 32 tahun 2004 tentan Pemerintahan Daerah
	9. 10. Undang-Undang No. 39 tahun 1999 tentan Hak Asasi Manusia

Module Handbook – Elementary Biology

Module designation	Elementary Biology
Semester(s) in which the module is taught	1st or 2nd Semester
Person responsible for the module	
Lecturer	Team teaching Biology Department
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 135.99 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 4.39 hours x 16 weeks = 70.39 hours/semester
Credit points	3 x 1.67 ECTS = 5.01 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/ intended learning outcomes	 Students after taking this course are able to: connecting phenomena encountered in life with biology understand that it is necessary to manage Indonesia's biodiversity and always be a material consideration for every decision taken to solve problems that will impact the existence of Indonesia's biodiversity imitate social attitudes, be able to express opinions and respect the opinions of others about biological knowledge and its application in everyday life Developing a sense of love for the motherland after studying Indonesia's biodiversity and its prospects Observing and explaining the diversity, structure and biological functions of organisms: monera, protists, fungi, plantae, animalia. Observing and explaining the ecology: population, community, ecosystem and bioconservation

Content	This course explains the theories and basic principles of biology that form the basis for further courses in the major / department. The lecture begins by explaining the scope of biology and the origins of life, then proceeding to the Midterm Examination, lectures explaining the structure and function of biology at the cellular level, genetics and its application in biotechnology. In the next section until the Final Examination, the lecture explains about biodiversity and biological functions at the level of organisms (monera, protists, fungi, plantae, and animalia), population, community, ecosystem, and conservation biology. Examples and the application of each topic are given to help students understand basic principles and theories.
Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
Reading list	Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson. 2014. Campbell Biology.10th. Pearson Education, Inc. Neil A. Campbell, Jane B. Reece. 2008. Biology 8th. Pearson Benjamin Cummings: San Francisco.

Module Handbook – English

Module designation	English
Semester(s) in which the module is taught	1st Semester
Person responsible for the module	Team Teaching
Language	Indonesian and English
Relation to curriculum	Compulsory Courses for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 90.66 hours/semester Lecture Class: 0.8 hours x 16 weeks = 12.8 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 2.36 hours x 16 weeks = 37.86 hours/semester
Credit points	2 x 1.67 ECTS = 3.34 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/ intended learning outcomes	 Students are able to use English to communicate according to the needs of their time Students have the ability to analyze English discourse to get the content/meaning contained in the discourse correctly. Students are able to choose the form of speech (language functions) according to their communication needs
Content	This course is structured to encourage students to be able to use English according to their needs and context. For this reason, grammatical structures, rhetorical models are introduced in constructing ideas, developing vocabulary, and forms of speech according to language functions in their respective contexts.

Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Written test (Mid Test, Final Test, Assignment, Quiz Psychomotor: Practice Affective: assessed from the element /variables achievement, namely :(a) Contributions (attendance, active, role, initiative, language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
	1. Abdulaziz, Helen Taylor, & Alfred D. Stover. 1980. Academic Challenges in Reading. Prentice-Hall, Inc.Englewood Cliffs, N.J.
	2. Anson M. Chris, Schwegler A. Robert. 2001. The Longman Handbook for Writers and Readers, An Imprint of Addision Wesley Longman, Inc.
	3. Dobbs, Carrie. 1989. Reading for a Reason. Prentice Hall Regents Englewood Cliffs, N.J.
Reading list	4. Feverstein, Tamar and Miriam S. 1995. Enhancing Reading Comprehension in the Language Learning Clasroom. Alta Book Center Pub. San Fransisco, California.
	5. Grellet, Francois. 1981. A Practical Guide to Reading Comprehension Exercises. Cambridge University Press.
	6. Hornby, A.S. 1991. Oxford Advanced Learner's Dictionary. Oxford UP.
	7. Karen Blanchard et.al. 1997. For Your Information 3. Longman.
	8. Kranhlee, Karl. 1976. Reading Together: A Reading Activities Text. St. Martin Press.
	9. Labarca. Angela and James M. Hendrickson. 1984. Our Global Village. Harcourt Brace Jovanovichy, Inc.
	10.Latulippe, L.D. 1987. Developing Academic Reading Skills. Prentice Hall Regents, Englewood Cliffs, N.J.
	11.Maingay, S. 1983. Making Sense of Reading: an Introduction to Reading Skills in English. Australia Nelson.
	12.Marcelino, M. 1999. Materials for Foundations of Academic Writing Course. AMINEF, Jakarta.

13.Mickulecky, Beatrice S. 2004. More Reading Power, Reading for Pleasure, Comprehension Skills, Thinking Skills, Reading Faster. Pearson Education, Inc.
14.Oshima, Alice, and Ann Hogue. 1999. Writing Academic English. Longman.
15.Praninkas, Jean. 1975. Rapid Review of English Grammar. Prentice Hall.
16.Rowland, Black S. and Lisa Rosenthal. 1986. Academic English and Study Skills for International Students. Prentice Hall. N.J.
17.Skykes, J.B. 1989. The Concise Oxford Dictionary. Oxford UP.
18.The British Council. 1979. Reading and Thinking: Exploring 19.Functions. Oxford UP.
20.Torres G, Eunice. Smith L. Michael. English for Fisheries Technology. National Bookstore, Inc.
21.Valerie Kay. 1985. Biological Sciences "Developing Reading Skill in English". Pergamon Press.
22.Woods, Enid Nolan and David Foll. 1986. Penguin Advanced Reading Skills. Penguin Book Ltd. England.
23.https://en.wikipedia.org/wiki/Chart
24.https://en.wikipedia.org/wiki/Graph
25.https://www.ncsu.edu/labwrite/res/tablevsgraph/res- tablevsgraph.html
<u>http://www.diffen.com/difference/Communism_vs_Fasci</u> <u>sm http://www.diffen.com/difference/DNA_vs_RNA</u>

Module Handbook – Calculus 1

Module designation	Calculus 1
Semester(s) in which the module is taught	2nd Semester
Person responsible for the module	Prof. Toni Bakhtiar
Lecturer	Team Teaching from Departmant of Mathematic
Language	Indonesian
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 135.99 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 4.39 hours x 16 weeks = 70.39 hours/semester
Credit points	3 x 1.67 ECTS = 5.01 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	 Explain the concept of differentiation, relation between derivative and tagent and rate of change, determine derivative of a function, and solve related rates. Determine maximum and minimum values of a function, determine increase/decrease interval, determine the concavity interval, find asymptots, sketch the graph. Apply the concept of differentiation in optimization. Relate the concept of area and the definite integral, explain the relation between derivative and integral, calculate definite and indefinite integrals by substitution rule. Describe the definition of inverse function, explain the definition of natural logarithmic and

	-
	 exponential functions and their relation, determine the derivative and integral of logarithmic, exponential, and trigonometric functions. 5. Determine integral of a function by using integral by parts and determine the integral of rational functions. 6. Apply integral to calculate area between curves, explain the average value theorem and its application. 7. Solve first order differential equation by using variable separation technique and its application.
Content	This course studies the derivation of a function and its application, integral of a function, transcendental function, technique of integration, application of integral, and introduction to ordinary differential equation.
Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, and language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
Reading list	 Stewart, J. 2001. Kalkulus. Ed. 4. I Nyoman Susila & Hendra Gunawan, penerjemah. Erlangga, Jakarta. Kreyzig, E. 1990. Matematika Teknik Lanjutan. Jilid 1. E. Hutahean, dkk, penerjemah. Erlangga, Jakarta.
Module Handbook – Statistics and Data Analysis

Module designation	Statistics and Data Analysis
Semester(s) in which the module is taught	1st and 2nd (odd and even) Semester
Person responsible for the module	Dr Ir I Made Sumertajaya, M.Si
Language	Indonesian (regular class), English (international class)
Relation to curriculum	Compulsory Courses for undergraduate program in IPB University
Teaching methods	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload (incl. contact hours, selfstudy hours)	Total workload: 135.99 hours/semester Lecture Class: 2.4 hours x 16 weeks = 38.4 hours/semester Independent study and assignment: 6.09 hours x 16 weeks = 97.59 hours/semester
Credit points	3 x 1.67 ECTS = 5.01 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	 Students have the ability to generate, present and interpret information general from the data Students have the ability to process simple data collection and management generate valid information

Content	This course explains the basic concepts of statistics, the understanding of several internal terms statistics (sample, population, data, etc.); various techniques of understanding data (data understanding), which include presentation and summary of data, exploration of the existence of extreme values, exploration of distribution patterns, exploration of comparisons between groups, and exploration of relationships between variables; modeling (modeling), that is includes associations, correlations and recognition of linear regression models; understanding of several collection methods data, data management as well as several techniques of presenting information in the presentation of analysis
	results, which can be applied to various applied fields, such as Agriculture, Biology, Social, Business, and so on. Eye this course also forms the basis for courses for further statistics courses such as Data Analysis Categorical, Regression Analysis, Experiment Design, Quality Control Statistics, and Time Series Analysis.
Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice
	<i>Affective:</i> Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
Reading list	 Agresti A, Franklin C, Kingenberg B. 2018. Statistics: the art and science of learning from data. Pearson – Harlow, England. Anderson DR, Sweeney DJ, Williams TA, Camm JD, Cochran JJ. 2018. Statistics for Bussiness and Economics, 13th ed. Cengage Learning. Boston. Moore DS, McCabe GP, Craig BA. 2014. Introduction to the Practice of Statistics. WH Freeman and Company – New York, USA

Module Handbook – Computational Thinking

Module designation	Computational Thinking
Semester(s) in which the module is taught	1st Semester
Lecturer	Team Teaching from Departmant of Mathematic
Language	Indonesian and English
Relation to curriculum	Compulsory module for undergraduate program in IPB University
Type of teaching, contact hours	Classical lecture using power point and module. Independent learning using class.ipb.ac.id.
Workload	Total workload: 135.99 hours/semester Lecture Class: 1.6 hours x 16 weeks = 25.6 hours/semester Practicum Class: 2.5 hours x 16 weeks = 40 hours/semester Independent study and assignment: 4.39 hours x 16 weeks = 70.39 hours/semester
Credit points	3 x 1.67 ECTS = 5.01 ECTS
Requirements according to the examination regulations	 Registered in this course Minimum 80% attendance in this course
Recommended prerequisites	-
Module objectives/intended learning outcomes	 Students have the ability to analyze problems and find solutions to these problems computational thinking approach Students have knowledge of computational tools that can be used to solve problems Students understand the ethics of using various computational tools in solving problems.
Content	This course provides students with an overview of the VUCA world that will be faced by students in the future basis of computational literacy and ethics in using information technology. More specifically, this course explains the process of meeting and recognizing problem and solution formulation by focusing on important information into a generic solution (abstraction), problem solving includes the process of breaking down a problem into smaller sub-problems (decomposition), looking for similar patterns of a

	problem (pattern matching), and build a structured solution step (algorithm). This course shapes students' thinking patterns in expressing deep solutions a series of structured steps that can be carried out with the help of computing technology. After following this course students are expected be able to apply ways of solving problems through computational thinking methods (computational thinking).
Examination forms	Written exam
Study and examination requirements and forms of examination	Cognitive: Midterm exam, Final exam, Quizzes, Assignments Psychomotor: Practice Affective: Assessed from the element /variables achievement, namely (a) Contributions (attendance, active, role, initiative, and language), (b) Being on time, (c) Effort.
Media employed	Classical teaching tools with white board and power point presentation
Reading list	 David Riley, Kenny A. Hun. 2014. Computational Thinking for the Modern Problem Solver. Chapman & Hall. Paul Curzon, Peter W McOwan. 2017. The Power of Computational Thinking. Games, Magic and Puzzles to Help You Become a Computational Thinker. World Scientific. Karl Beeche. 2017. Computational Thinking: A beginner's guide to problem-solving and programming. George Beekman, Ben Beekman. 2012. Digital Planet: Tomorrow's Technology and You 10e. Pearson. 5. V. Anton Spraul. 2012. Think Like a Programmer: An Introduction to Creative Problem Solving. No Starch Press. Eric Freemen. 2018. Head First Learn to Code: A Learner's Guide to Coding and Computational Thinking. O'Reilly Media

Module Handbook – Newtonian Mechanics

Module designation	Newtonian Mechanics
Semester(s) in which the module is taught	3 rd (third)
Person responsible for the module	Dr. Mersi Kurniati
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (3 rd semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	Science and Technology Physics
Module objectives/intended learning outcomes	 Students are able to formulate and understand the theoretical concepts of mechanics with a Newtonian (classical) mechanics approach and have knowledge of mathematical tools Students are able to analyze various alternative solutions to Newtonian mechanics problems Students are able to apply the theory of Newtonian mechanics and provide alternative solutions to problems encountered in its application in agricultural engineering Students are able to think critically to solve problems and adjust to technological developments related to the study of Newtonian mechanics

Content	 Kinematics, Newton's laws and inertial systems, Galileo transformations, simple applications of the laws Newton, including constant applied forces, time-dependent forces and theorems energy conservation in 1D, 2D and 3D cases. Motion in a multiparticle system: angular momentum and kinetic energy of a system, motion of two or more interacting bodies, the parallel axes theorem.
	3. Motion in a rigid body system: center of mass, the moment of inertia, rotation about a fixed axis, angular momentum and oscillation of the pendulum.
	 Accelerated coordinate systems, inertial forces, rotating coordinate systems, and particle dynamics in a rotating coordinate system. Motion under the influence of the central force. The gravitational force on a homogeneous solid ball and a hollow sphere, potential energy in a gravitational field, Kepler's laws of planetary motion.
Examination forms	Written exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (20%), mid semester exam (40%), and end semester exam (40%)
Reading list	 Arya, A. P., "Introduction to Classical Mechanics," 2nd Ed., Prentice Hall, 1998. P.A. Tipler, Fisika untuk Sains dan Teknik, Jilid 1, Penerbit Erlangga, Jakarta. 1991

Module Handbook – Mathematical Physics

Module designation	Mathematical Physics
Semester(s) in which the module is taught	3 rd (third)
Person responsible for the module	Prof. Tony Sumaryada
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (3 rd semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	MAT1103 - Basic mathematic

Module objectives/intended learning outcomes	 Students can understand concepts and demonstrate and use partial differentiation methods and techniques in solving physics problems in nature. Students understand concepts and can use multiple integration methods and techniques in solving physics problems in nature. Students can understand concepts and be able to use vector analysis techniques with various operators to solve physics problems in nature. Students can understand the basic concepts of multivariable linear algebra with a matrix approach, including eigenvalues and eigenvectors, and use them to solve various kinds of physics problems in nature. Students can understand the concept of complex numbers
	and be able to demonstrate and use them in solving various physics problems in nature.
	6. Students can understand the concept of series types of convergence series, know their physical applications and be able to solve physics problems that require a series-shaped solution.
Content	Partial and total differentials, folding integrals, vector analysis, linear algebra, complex numbers, Calculus of Variation and series.
Examination forms	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (40%), mid semester exam (30%), and end semester exam (30%).
Study and examination requirements	Written Exam
Reading list	 Mary L Boas, "Mathematical Methods in the Physical Sciences.", Academic Press, 3rd edition 2005 George Arfken, Mathematical Methods for Physicists: A Comprehensive Guide 7th Edition, Academic Press, 2012

Module Handbook – Analogue Electronics

Module designation	Analogue Electronics
Semester(s) in which the module is taught	3 rd (third)
Person responsible for the module	Mahfuddin Zuhri, M.Sc
Language	Bahasa Indonesia
Relation to curriculum	in the second year (3 rd semester) bachelor's degree
Teaching methods	5 minutes lectures and 180 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, 100 minutes lab work, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	2 SCH x (1.67) = 3.34 ECTS
Required and recommended prerequisites for joining the module	Science and Technology Physics
Module objectives/intended learning outcomes	 Students can understand the basic principles of electricity, sources of electrical energy, loading problems, electronic components, and the working principles of electrical measuring instruments. Students are able to use measuring instruments and generators of electrical quantities, such as multimeters, oscilloscopes, signal generators, and power supplies. Students can analyze and direct electronic circuits using the laws and theorems of electrical circuits. Students can design power supplies and simple signal processing circuits using Diodes, Transistors and Operational Amplifiers (Op-Amp) Students can create simple analogue circuit applications that are useful for everyday life.

	1. Basic Principles of Electricity
	2. Electronic Components and Basic Measurements
	3. Network Theorem
	4. AC and RLC circuits
	5. Semiconductor Diodes & Semiconductor Diode Circuits
	6. Power Supply Circuit
Content	7. Bipolar Junction Transistors
	8. Bipolar Junction Transistor Amplifier Circuit
	9. Field Effect Transistor Amplifier Circuit
	10. Power booster circuit
	11. Operational Amplifier (Op-Amp)
	12. Op-Amp Amplifier Circuit
	13. Oscillator
Examination forms	Written exam, and project-based exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (65%), mid semester exam (15%), and end semester exam (15%)
Reading list	 Grob's Basic Electronics, Mitchel E. Schultz, Mc-Graw Hill, 11th Edition Electronic Circuit Design, An Engineering Approach, Savant, Roden, The Benjamin/Cummings Publishing Company, Inc. Prinsip-prinsip Elektronika, Malvino, Erlangga, Jakarta,
	Enangga, 1990.

Module Handbook – Thermodynamics

Module designation	Thermodynamics
Semester(s) in which the module is taught	3 rd (third)
Person responsible for the module	Dr. Setyanto Tri Wahyudi
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (3rd semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	-
Module objectives/intended learning outcomes	 Students can explain the zero law of thermodynamics and the consequences of determining temperature quantities. Students can explain the ideal gas equation and van der Waals and solve problems related to these equations. Students can explain the 1st law of thermodynamics and its consequences and apply it to the calculations of combustion and cooling engines. Students can explain the 2nd law of thermodynamics, use the concept of entropy, and apply it to simple systems. Students can explain the 3rd law of thermodynamics and use it to calculate entropy changes in processes involving pure substances. Students can explain the phases of pure substances and open systems and use mathematical methods to reformulate the 1st law of thermodynamics. Students can demonstrate the relationship between statistical mechanics and classical thermodynamics.

Content	This course studies temperature, namely the macroscopic view, micr thermal equilibrium and the concept of temperature; simple thermo states, differential changes of states, mathematical theorems, inten quasi-static processes, work in quasi-static processes and work in sir thermodynamics; equation of hydrostatic system that is, heat-condu Boltzmann law; ideal gas, i.e., the internal energy of the gas, ideal g thermodynamics, TS diagram, Carnot cycle, application of entropy p enthalpy, Helmholtz and Gibbs functions, Maxwell's equation, T ds e namely, Clapeyron equation, melting and evaporation, sublimation; statistical mechanics.
Examination forms	Written exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (20%), mid semester exam (40%), and end semester exam (40%)
Reading list	 Sekerka, R.F, Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers 1st Edition, Elsevier, 2015. Zemansky, MW & Richard Dittman, Heat and Thermodynamics. 7th Ed, McGraw-Hill, 1997 Roy, B.N, Fundamentals of Classical Statistical Thermodynamics, West Sussex: John Wiley & Sons, 2003

Module Handbook – Waves

Module designation	Waves
Semester(s) in which the module is taught	3 rd (third)
Person responsible for the module	Abdul Djamil Husin, M.Sc
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (3rd semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	(Fis 104) Science and Technology Physics, (MAT-103) Basic Mathematics
Module objectives/intended learning outcomes	 Students can better understand the motion of harmonic oscillations Students are expected further to understand the concept of damped oscillations and forced oscillations Students are expected to understand coupled oscillatory motion and its applications Students can understand and understand the wave equation and the types and characteristics of waves Students are expected to understand and understand wave energy and impedance Students are expected to understand the nature of electromagnetic waves and their applications.

Content	Damped oscillatory motion and forced oscillatory motion, Coupled oscillations, which include a pendulum with a spring, a spring in the transverse and longitudinal directions, N particles longitudinally and transversely, Application of coupled oscillations, Lissajous pattern, Equation of waves and types of waves, Fourier series and its application to waves, travelling waves and their properties, standing waves and their properties, calculating wave Energy, impedance and wave superposition, Reflection, transmission, interference and diffraction and polarization of electromagnetic waves, including GEM properties, and their applications.
Examination forms	Written exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (40%), mid semester exam (30%), and end semester exam (30%)
Reading list	 F.S. Crawford, "WAVES", Berkeley Physics course, volume 3, McGraw-Hill Book Company, New York, 1968. G A Sarojo, "Gelombang dan Optika", Salemba Teknika, 2011. H.J.Pain, "The PhysicsofVibrations and Waves", John Wiley& Sons, New York 1999. M.O. Tjia, "Gelombang" Dabara Publishers, Solo, 1994. Sutrisno, "Fisika Dasar ;Gelombang dan Optik", Penerbit ITB, Bandung, 1976.

Module Handbook – Electrostatics

Module designation	Electrostatics
Semester(s) in which the module is taught	3 rd (third)
Person responsible for the module	Abdul Djamil Husien, M.Sc
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (3 rd semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	(Fis 104) Science and Technology Physics
Module objectives/intended learning outcomes	After completing and following this course material, students are expected to be able to understand the properties of static electricity and be able to apply them in everyday life.
Content	Coulomb's law and electric field intensity, Electric flux density, Gauss's law, Electric dipole, Electric potential, Electric potential energy, Electric current and conductors, Polarization, Dielectric and Capacitance Conditions for limiting electric field intensity between two dielectric mediums, Laplace's equation, Poisson's equation and shadow method.
Examination forms	Written exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (40%), mid semester exam (30%), and end semester exam (30%)

	1. William H . Hyatt, John A Buck, "Electromagnetics ", McGraw Hill
Reading list	2. Matthew N.O Sadiku, "Element of Electromagnetics", Oxford University Press
	3. Markus Zahn, "Electromagnetic Field Theory ", Krieger Publishing Company, Malabar Florida

Module Handbook – Langrangian-Hamiltonian Mechanics

Module designation	Langrangian-Hamiltonian Mechanics
Semester(s) in which the module is taught	4 th (fourth)
Person responsible for the module	Prof. Husin Alatas
Language	Bahasa Indonesia
Relation to curriculum	Academic core course in the second year (3 rd semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	-

Module obiectives/intended	1. Students are able to review Newtonian mechanics for systems of many particles
	 Students are able to understand and master the concept of aeneral coordinate systems and constraint equations
	 Students are able to understand and master the principles and variations of action, the Lagrange equation and canonical momentum
	4. Students are able to understand and master the application of the Lagrange equation for several dynamic cases
learning outcomes	5. Students are able to understand and master the Legendre transformation and define Hamiltonian forms
	6. Students are able to understand and master Hamiltonian canonical principles and equations, as well as their application to dynamics problem
	7. Students are able to understand and master the formulation of the Hamilton-Jacobi equation and its application
	8. Students have an understanding of the transition to quantum mechanics
Content	Principle of work-energy of many-particle systems, D'Alembert's principle and concept of virtual displacement, General coordinate system for many-particle systems, Equation of constraints, Calculus of variations, Functional Lagrange action and Hamilton's principle, Lagrange's equations, Canonical momentum, Dynamics of controlled many-particle systems, Rigid body dynamics, Legendre transform, Hamiltonian functions, Hamiltonian functions and Hamilton principle, Canonical equations, Dynamics of simple systems based on Hamilton equations, Concept of phase space, Hamilton-Jacobi equations, Application of Hamilton-Jacobi equations in dynamics of simple systems, Poisson brackets, Integral cross Feynman, Transition to quantum mechanics
Examination forms	Written exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (30%), mid semester exam (35%), and end semester exam (35%)
Reading list	 Arya, A. P., "Introduction to Classical Mechanics," 2nd Ed., Prentice Hall, 1998. Iver H. Brevik, Jacob Linder, Introduction to Lagrangian and Hamiltonian Mechanics, Bookboon, 2016

Module Handbook – Advanced Mathematical Physics

Module designation	Advanced Mathematical Physics
Semester(s) in which the module is taught	4 th (fourth)
Person responsible for the module	Dr. Faozan
Language	Bahasa Indonesia
Relation to curriculum	Academic core course in the second year (4 th semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	FIS1203 Mathematical Physics

	 Students can describe functions in series, and Fourier transforms.
	2. Students can solve various forms of first and second-order linear differential equations with various methods.
	3. Students can derive the equations of motion for the dynamics of a physical system based on the principle of variation.
Module objectives/intended	4. Students can describe several physical quantities in tensor notation and their applications
learning outcomes	5. Students can solve problems related to several unique functions, such as factorial, gamma, and beta functions.
	6. Students can solve particular differential equations (Legendre, Bessel, Hermite, and Laguerre differential equations) in series form.
	7. Students can solve various forms of multi-variable differential equations (partial differential equations)
	8. Students can solve various real integral forms in the representation of complex variables
Content	Fourier Series and Transform, Ordinary Differential Equations, Calculus of Variation, Tensor Analysis, Special Functions, Series Solution of Differential Equations, Partial Differential Equations and Complex Analysis.
Examination forms	Written Exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (20%), mid semester exam (40%), and end semester exam (40%).
Reading list	 BOAS, M. L. (2006). Mathematical methods in the physical sciences. 3rd, New York, Wiley. G. Arfken (1985) Mathematical Methods for Physicists. 5th Edition, Academic Press, NY.

Module Handbook – Digital Electronics

Module designation	Digital Electronics
Semester(s) in which the module is taught	4 th (fourth)
Person responsible for the module	Mahfuddin Zuhri, M.Sc
Language	Bahasa Indonesia
Relation to curriculum	Academic core course in the second year (4 th semester) bachelor's degree
Teaching methods	50 minutes lectures and 180 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, 100 minutes lab work, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	2 SCH x (1.67) = 4,5 ETCS
Required and recommended prerequisites for joining the module	-
Module objectives/intended learning outcomes	 Students can understand the basic concepts of digital systems, including the binary number system, Boolean algebra, and Karnaugh maps. Students can build digital electronic circuits based on TTL and CMOS IC (integrated circuits) to form combinational and sequential systems. Students can compile simple, functional electronic circuits, including registers, counters, memory, SAP machines, and ADC/DAC. Students understand the basic concepts of microcontrollers and know the basics of Arduino programming and its applications.

Content	Number systems and codes, logic gates and Boolean algebra, TTL and CMOS integrated circuits (IC), combinational circuits, digital arithmetic circuits and operations, flip-flops, registers and counters, memory, Simple as Possible (SAP) DAC/ADC machines, introduction to microcontrollers, I/O on Arduino, Arduino data displays, Arduino communication techniques
Examination forms	Written Exam, Projects Based Exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation), Final score is evaluated based on assignment and presence (70%), mid semester exam (15%), and end semester exam (15%).
Reading list	 Tocci RJ, Widmer NS. 2017. Digital System, Principles and Applications. 12th Edition New Jersey: Prentice-Hall,Inc. Malvino. A.P. 1992. Elektronika Komputer Digital, Pengantar Mikrokomputer. Jakarta: Erlangga

Module Handbook – Computational Physics

Module designation	Computational Physics
Semester(s) in which the module is taught	4 th (fourth)
Person responsible for the module	Dr. Agus Kartono
Language	Bahasa Indonesia
Relation to curriculum	Academic core course in the second year (4 th semester) bachelor's degree
Teaching methods	50 minutes lectures and 180 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, 100 minutes lab work, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	2 SCH x (1.67) = 3.34 ECTS
Required and recommended prerequisites for joining the module	FIS1203 Mathematical Physics

	1. Students are able to understand the MATLAB/OCTAVE
Module objectives/intended learning outcomes	programming language.
	 Students are able to understand the Newton-Raphson and Secant numerical methods to find one root of non-linear and multiple non-linear equations.
	3. Students are able to understand the Euler numerical method and the Runge-Kutta method to find numerical solutions to ordinary differential equations.
	 Students are able to understand ODE (ordinary differential equation) functions from the MATLAB/OCTAVE Programming Language to solve numerical solutions of ordinary differential equations.
	5. Students are able to understand the explicit, implicit and Crank Nicolson finite differential methods to find the numerical solutions of time-dependent partial differential equations.
	6. Students are able to understand the formulation of numerical methods of linear regression and non-linear regression to analyze experimental data sets.
	7. Students are able to understand the use of the finite element method to find numerical solutions to partial differential equations depending on time
	1. Introduction to the MATLAB/OCTAVE programming language.
Content	2. Newton-Raphson and Secant numerical methods to find one root of a non-linear equation and multiple non-linear equations.
	<i>3.</i> The Euler numerical method and the Runge-Kutta method for finding numerical solutions to ordinary differential equations.
	4. Introduction to the ODE (ordinary differential equation) function of the MATLAB/OCTAVE Programming Language.
	5. Explicit, implicit and Crank Nicolson finite differential methods to find numerical solutions to partial differential equations.
	6. Numerical methods of linear regression and non-linear regression to analyze experimental data sets.
	7. Finite element method for finding numerical solutions to partial differential equations.
Examination forms	Written exam

endance at lectures is 80% (according to IPB nal score is evaluated based on assignment and 6), mid semester exam (40%), and end semester
onal Physics, 2nd edition, Nicholas J. Giordano, nishi, Pearson Education Inc, 2006. putasi, Heriyanto Syafutra dan Agus Kartono, PT B Press, 2017. Ind J.P. Denier, An Introduction to Programming and Methods in MATLAB. Springer-Verlag London
nd N 05

Module Handbook – Advanced Physics Experiment

Module designation	Advanced Physics Experiment	
Semester(s) in which the module is taught	4 th (Fourth)	
Person responsible for the module	Prof. Akhiruddin	
Language	Bahasa Indonesia	
Relation to curriculum	Academic core course in the second year (4 th semester) bachelor's degree	
Teaching methods	50 minutes lectures and 180 minutes practicum per week.	
Workload (incl. contact hours, self-study hours)	Total workload is 75 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, 150 minutes lab work, in total is 14 weeks per semester, excluding mid exam and final exam.	
Credit points	2 SCH x (1.67) = 3.34 ECTS	
Required and recommended prerequisites for joining the module	-	

	1. Students are able to understand the scope of the Advanced Physics Experiment course	
Module objectives/intended learning outcomes	2. Students are able to prove the quantization of energy in atoms	
	3. Students are able to prove the quantization of charge and determine the mass are able to charge of electrons	
	4. Students are able to prove the nature of wave-particle dualism	
	5. Students are able to relate the interaction of magnetic fields with matter	
	6. Students are able to understand the phenomenon of transport in solids	
	7. Students are able to implement the principle of measuring the speed of light	
	8. Students are able to describe the characteristics of the laser and use it in precision measurements	
	9. Students are able to use the laws of thermal radiation	
	10. Students are able to understand the distribution and absorption of nuclear radiation	
Content	This course contains several topics of fundamental physics experiments that build quantum theory, such as the hydrogen atomic spectrum experiment, the Millikan's oil drop experiment, the Frank-Hertz experiment, the photoelectric effect, the e/m ratio experiment, the laws of thermal radiation, the speed of light, laser characteristics, Michelson interferometer, radioactive counting, Hall effect, and electron spin resonance (ESR).	
Examination forms	Written exam.	
Study and examination requirements	Minimum lecture attendance is 80% and 100% of the practices (according to IPB regulation). The final score is evaluated based on assignment and presence (50%), mid-semester exam (20%), and final exam (30%).	
Reading list	 Daryl W. Preston, "The Art of Experimental Physics.", John Wiley & Sons, Inc. 1991. Adrian C. Melissinos, Jim Napolitano, "Experiments in Modern Physics.", Second Edition. Academic Press, 2003. 	

Module Handbook – Biophysics

Module designation	Biophysics	
Semester(s) in which the module is taught	4 th (fourth)	
Person responsible for the module	Dr. Yessie Widya Sarie	
Language	Bahasa Indonesia	
Relation to curriculum	In-depth course in the second year (4 th semester) bachelor's degree	
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.	
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 100 minutes lectures per week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.	
Credit points	2 SCH x (1.67) = 3.34 ECTS	
Required and recommended prerequisites for joining the module		

	1. Students can understand the scope of biophysics	
Module objectives/intended learning outcomes	2. Students can understand the concept of cell biophysics	
	3. Students can understand the concept of force on the nanometer scale	
	4. Students can understand the concept of the structure and physical properties of biomolecules	
	5. Students can understand the concept of biological thermodynamics	
	6. Students can understand the concepts and applications of membrane biophysics	
	7. Students can understand the concepts and applications of photo biophysics (luminescence, photosynthesis)	
	8. Students can understand the concepts and computational applications of protein biophysics	
	<i>9. Students can understand the concepts and applications of radiation biophysics</i>	
	10. Students can understand the concepts and applications of the electrical and magnetic properties of cells	
	11. Students can understand the concepts and applications of bioacoustics	
Content	Cell biophysics, forces at the nanometer scale, structure and physical properties of biomolecules, biological thermodynamics, photo biophysics (luminescence, photosynthesis), computational protein biophysics, membrane biophysics, radiation biophysics, electrical and magnetic properties of cells, bioacoustics.	
Examination forms	Written exam	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence(30%), and exam (70%)	

	1 Hoppe W. Johmann W. Markl H. Ziegler H. 1002 Pionhysics
	First edition. Heilderberg, Berlin: Springer. https://doi.org/10.1007/978-3-642-68877-5
Reading list	2. Lakowicz JR. 2006. <i>Principles of Fluorescence Spectroscopy</i> . Third edition. United State (US): Springer.
	3. Hou HJM, Najafpour MM. Moore GF. Allakhverdiev SI. 2017. <i>Photosynthesis: Structures, Mechanisms, and Applications</i> . Cham, Switzerland: Springer. <u>https://doi.org/10.1007/978-3-319-48873-8</u>
	4. Becker OM, MacKerell AD, Roux Jr.B, Watanabe M. 2001. Computational Biochemistry and Biophysics. CRC Press. ISBN: 082470455X,9780824704551
	5. Baker RW. 2004. <i>Membrane Technology and Applications</i> . Second edition. West Sussex, England: John Wiley & Sons Ltd.
	 Hall, E.J. 2011. Radiobiology for Radiobiologist. Lippincottt Williams & Wilkins; 7th edition
	 Vadivambal, R., Jayas, D.S. Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food Bioprocess Technol 4, 186–199 (2011). <u>https://doi.org/10.1007/s11947- 010-0333-5</u>
	 Joana Madureira, Lillian Barros, Sandra Cabo Verde, Fernanda M. A. Margaça, Celestino Santos-Buelga, and Isabel C. F. R. Ferreira Journal of Agricultural and Food Chemistry 2020 68 (40), 11054-11067, DOI: 10.1021/acs.jafc.0c04984
	 Kelly SG. 2012. Mechanical Vibrations: Theory and Applications. United State of America (USA): Global Engineering. ISBN-13: 978-1-4390-6214-2. ISBN-10: 1-4390- 6214-5
	 Jeong Y. 2011. Introduction to Bioelectricity. Di dalam: Yoo HJ, van Hoof C, editor. <i>Bio-Medical CMOS ICs. Integrated Circuits</i> <i>and Systems</i>. Boston: Springer. Halaman 13 - 29. <u>https://doi.org/10.1007/978-1-4419-6597-4_2</u>

Module Handbook – Electrodynamics

Module designation	Electrodynamics			
Semester(s) in which the module is taught	4 th (fourth)			
Person responsible for the module	Abdul Djamil Husin, M.Sc			
Language	Bahasa Indonesia			
Relation to curriculum	Academic core course in the second year (4 th semester) bachelor's degree			
Teaching methods	150 minutes lectures and 180 minutes structured activities per week.			
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.			
Credit points	3 SCH x (1.67) = 5.01 ECTS			
Required and recommended prerequisites for joining the module	Physics Science and Technology, Mathematical Physics, Electrostatics			

	1. Students are able to understand the Stokes theorem, coordinate transformation (cartesian, cylindrical and spherical), gradient, divergence and curl and its application in electrodynamics.
	 Students are able to understand electric field vectors, polarization, and electric flux density in dielectric materials and boundary conditions at the border of two media.
	3. Students are able to understand the Laplace and Poisson equations in electromagnetics.
	4. Students are able to understand the Biot-Savart law, Ampere's law, magnetic flux and magnetic flux density
	5. as well as magnetic potential
	6. Students are able to understand the magnetic field in materials and the types of magnetic materials
	7. Students are able to understand inductors and inductances, energy in magnetic fields and flux densities
Module objectives/intended	8. magnetic
learning outcomes	9. Students are able to understand magnetic circuits, Faraday's law of induction, and Lenz's law
	10. Students are able to understand displacement currents and Maxwell's equations
	11. Students are able to understand continuity equations, Poynting vectors and Newton's III Law
	12. electrodynamics
	13. Students are able to understand electromagnetic waves in a vacuum
	14. Students are able to understand electromagnetic waves in materials
	15. Students are able to understand the delayed potential, the Jefimenko equation, and the Lienard-Wiechert potential
	16. Students are able to understand electromagnetic wave radiation
	17. Students are able to understand the Lorentz transformation for E and B
Content	The subject matter includes Biot-Savart Law, Faraday's Law, Magnetic Field, Magnetic Flux, Poisson and Laplace Equations, Ampere's Law, Maxwell's Equations for Electrodynamics, Electromagnetic Waves, Radiation, Magnetic Potential, Laplace Transformation for E and B.

Examination forms	Written exam	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (35%), mid semester exam (30%), and end semester exam (35%)	
Reading list	 David J Griffiths, "Introduction to Electrodynamics", Prentice Hall International, Inc. William H Hyat, J A Buck, "Elektromagnetika" (Terjemahan Bahasa Indonesia), penerbit Erlangga. Edward M Purcell, "Electricity And Magnetism", Berkeley Physics, Course Volume 3, Mc Graw Hill, Inc 	

Module Handbook – Quantum Physics

Module designation	Quantum Physics	
Semester(s) in which the module is taught	5 th (fifth)	
Person responsible for the module	Dr. Agus Kartono	
Language	Bahasa Indonesia	
Relation to curriculum	Compulsory course in the fifth year (5 th fifth) bachelor's degree	
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.	
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.	
Credit points	3 SCH x (1.67) = 5.01 ECTS	
Required and recommended prerequisites for joining the module	FIS1203 Mathematical Physics, FIS1206 Advanced Mathematical Physics	

	1. Students describe the emergence of quantum physics.	
	2. Students can analyze the properties of wave functions.	
	 Students can solve the problem of particles in a box and determine the total wave function of free particles (x,t) if (x,0) is known. 	
	 Students can determine the solution of the Schrödinger equation for several simple one-dimensional potential cases. 	
	5. Students can analyze the properties of the eigenvalue equation and the Hermitian operator.	
Module objectives/intended learning outcomes	6. Students can determine the eigenvalues and eigenfunctions of a harmonic oscillator using the operator method.	
	7. Students can construct spherical harmonics and determine angular momentum eigenvalues.	
	8. Students can determine the energy spectrum of the hydrogen atom.	
	9. Students can solve the eigenvalue equation using matrix notation.	
	10. Students can solve the Schrödinger equation with the disturbed Hamiltonian form, H=H0+λH'.	
Content	Background to the emergence of quantum physics, Theory of the properties of the wave function, Theory of the wave function for free particles and particles in a box, Analytical solutions of the Schrödinger equation for some simple one-dimensional potential cases. the properties of the eigenvalue equation and the Hermitian operator, Determination of the eigenvalues and eigenfunctions of the harmonic oscillator, Theory of spherical harmonics construction and determining the angular momentum eigenvalues, Determination of the energy spectrum of the hydrogen atom, Solving the eigenvalue equation using matrix notation, Theory solving the Schrödinger equation with disturbed Hamiltonian form.	
Examination forms	Written exam	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (40%), mid semester exam (30%), and end semester exam (30%)	

Reading list	1.	David S. Saxon, Elementary quantum mechanics, University of California, Los Angeles
	2.	S. Gasiorowicz. (1995). Quantum Physics. 2nd, John Wiley & Sons.
	3.	Hendradi Hardhienata, Tutorial Mekanika Kuantum Vol. 1,
		IPB University.
	4.	Ahmad A. Kamal, 1000 Solved Problems in Modern Physics Springer-Verlag Berlin Heidelberg 2010
Module Handbook – Statistical Physics

Module designation	Statistical Physics			
Semester(s) in which the module is taught	5 th (fifth)			
Person responsible for the module	Dr. Mersi Kurniati			
Language	Bahasa Indonesia			
Relation to curriculum	Academic core course in the third year (5 th fifth) bachelor's degree			
Teaching methods	100 minutes lectures and 120 minutes structured activities per weeks			
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.			
Credit points	3 SCH x (1.67) = 5.01 ECTS			
Required and recommended prerequisites for joining the module	-			
Module objectives/intended learning outcomes	 Students are able to understand physics phenomena in nature that correlate to thermodynamics concepts, energy, and phase transition either at a microscopic level or macroscopic level, using statistical tools. Students are able to demonstrate the usage of mechanical statistic methods to solve various simple physics phenomena. 			
Content	Maxwell-Boltzmann statistics, Phase room and Canonical Ensemble concept, Determination of Statistical Parameters, Determination of Statistical Parameters, Bose-Eistein Statistics. Fermi-Dirac Statistics. State density of quantum systems. Distribution and Gas Particle Velocity Distributions and gas particles velocity. Maxwell-Boltzmann statistics applications, Bose-Einstein Statistics applications, Fermi-Dirac statistics applications			
Examination forms	Written Exam			

Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (30%), mid semester exam (35%), and end semester exam (35%)		
Reading list	 Swendsen, R. An Introduction to Statistical Mechanics and Thermodynamics. Second edition. Oxford University Press. 2020. Huang K, Introduction to Statistical Physics 2nd Edition, Routledge, 2009 Sears & Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics Addison Wesley Publ. Company Massachusetts, 1976 		

Module Handbook – Optics and Photonics

Module designation	Optics and Photonics	
Semester(s) in which the module is taught	5 th (fifth)	
The person responsible for the module	Prof. Dr. Husin Alatas	
Language	Bahasa Indonesia	
Relation to curriculum	Compulsory course in the third year (5 th fifth semester) of bachelor's degree	
Teaching methods	One hundred minutes of lectures and 120 minutes of structured activities per week.	
Workload (incl. contact hours, self-study hours)	The total workload is 79 hours per semester, consisting of 100 minutes of lectures per week for 14 weeks, 120 minutes of structured activities per week, and 120 minutes of individual study per week; the total is 14 weeks per semester, excluding mid-exam and final exams.	
Credit points	2 SCH x (1.67) = 3.34 ECTS	
Required and recommended prerequisites for joining the module	Science and Technology Physics	

	1. Students can explain the history of optics and photonics (light sciences)		
	2. Students can understand the properties of electromagnetic waves and Maxwell equations.		
Module objectives/intended	 Students can understand and describe electromagnetic wave propagations in a homogenous and periodic medium. 		
	4. Students are able to derived Fresnel using the boundary conditions and continuity.		
	5. Students are able to understand the dipole radiation phenomenon and its correlation with Huygens principle		
learning outcomes	6. Students are able to derived matter-light interaction using Loretz and Drude approach.		
	7. Students are able to understand the formation of plasmon polariton on the surface and metamaterials.		
	8. Students are able to understand the formation of high harmonic wave and nonlinear optics phenomenon.		
	9. Students are able to understand light propagation trough optical fiber and optical fiber communication base principal		
	10. Students are able to understand the working and applications of optical and photonic devices.		
Content	Introduction to Optics and Photonics, Maxwell's Equations and Electromagnetic Wave Propagation, Fresnel Equation, Total Internal Reflection, Planar Waveguides, Effects of Nonlinearity on Dielectric Materials and Their Consequences, Quantum Explanation of Atomic Energy Levels and Their Applications, Nonlinear Properties of Semiconductor Materials, Laser Principles and its applications.		
Examination forms	Written Exam		
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). The final score is evaluated based on assignment and presence (20%), mid semester exam (40%), and end semester exam (40%)		
Reading list	 Hecht, E. (2016). Optics (5th ed.). Pearson. Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2017). Introduction to Optics (3rd ed.). Pearson. Saleh, B. E. A., & Teich, M. C. (2007). Fundamentals of Photonics (2nd ed.). Wiley-Interscience. 		

Module Handbook – Int. Based Instrumentation System

Module designation	Internet Based Instrumentation System		
Semester(s) in which the module is taught	5 th fifth		
Person responsible for the module	Dr, Ir, Irmansyah, M.Si		
Language	Bahasa Indonesia		
Relation to curriculum	Compulsory in the third year (5 th fifth semester) bachelor's degree		
Teaching methods	50 minutes lectures and 180 minutes structured activities per week.		
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, 100 minutes lab work, in total is 14 weeks per semester, excluding mid exam and final exam.		
Credit points	3 SCH x 1.67 = 5.01 ECTS		
Required and recommended prerequisites for joining the module	-		
Module objectives/intended learning outcomes	 Students can analyze the devices and connections which made The Internet of Things. Students can build a sensor-actuator system using an Arduino microcontroller. Students can create programs using Python language, which provides IoT functionality on the Raspberry Pi single- board computer. Students can explore the use of Cloud and Fog technology in IoT systems. Students can explain the role of IoT systems in solving global problems in manufacturing, health, agriculture or energy. Students can design and build IoT to solve various problem in human life, such as energy, industry, agriculture, food and others. 		

Content	This course covers Basic Principles of Control Systems, Microcontrollers, Small Board Computers, Network Operating Systems, Network Basic Principles, Network Application Services, Network Programming Basics, and Application Programming Interface.
Examination forms	Written Exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (70%), mid semester exam (15%), and end semester exam (15%).
Reading list	Sudip mIsra, Anandarup Mukherjee. "Introduction to IOT." Cambridge University press, 2021.

Module Handbook – Complex System

Module designation	Complex System	
Semester(s) in which the module is taught	5 th (fifth)	
Person responsible for the module	Prof. Husin Alatas	
Language	Bahasa Indonesia	
Relation to curriculum	Compulsory in the third year (5 th fifth semester) bachelor's degree	
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.	
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 100 minutes lectures per week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.	
Credit points	2 SCH x (1.67) = 3.34 ECTS	
Required and recommended prerequisites for joining the module	-	

Module objectives/intended learning outcomes	 Students are able to understand the importance of the complexity paradigm in reviewing physics and biology. Students are able to understand the principles of complex system modelling based on an agent-based modelling approach, as well as understand and master the basic principles of networks and their applications in simple problems. Students are able to understand and master the characteristics that appear in complex material systems and are able to understand and master aspects related to the emergence of emergent properties in materials as a 	
	 consequence of collective interactions between atoms. 4. Students are able to understand and master the characteristics that appear in biological systems, as well as understand and master aspects related to the emergence of emergent properties in molecular systems as a consequence of collective interactions between molecular groups. 5. Students have skills in implementing the knowledge gained to describe the dynamics of social, material and biological systems. 	
Content	Introduction to Complex Systems, Complexity Paradigm, Agent- based modelling, Network analysis, Complex material structures, Functional density theory, Material design, Complex molecular structures, Newtonian dynamics for molecules, Molecular dynamics analysis, Study of dynamics of social systems using agent-based modelling, Study of system dynamics complex materials using density functional theory, dynamics studies of complex molecular systems using Newtonian dynamics.	
Examination forms	Written Exam	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on mid semester exam (50%), and end semester exam (50%)	
Reading list	 Introduction to the Theory of Complex System, S. Turner et al. Oxford University Press, 2018. T. Egami, S. J. S. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon Press, 2003. A. S. Mikhailov, G. Ertl, Chemical Complexity: Self-Organization Processes in Molecular Systems, Springer Science, 2017. 	

Module Handbook – Biomaterials

Module designation	Biomaterials	
Semester(s) in which the module is taught	5 th (fifth)	
Person responsible for the module	Nur Aisyah Nuzulia, M.Si	
Language	Bahasa Indonesia	
Relation to curriculum	In-depth course in the third year (5 th fifth semester) bachelor's degree	
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.	
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 100 minutes lectures per week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual study per week, in tota is 14 weeks per semester, excluding mid exam and final exam.	
Credit points	2 SCH x (1.67) = 3.34 ECTS	
Required and recommended prerequisites for joining the module	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (60%), mid semester exam (20%), and end semester exam (20%)	
Module objectives/intended learning outcomes	 Students are able to understand the basic concepts of biomaterials, the history of biomaterial development, the types of biomaterials and their applications. Students are able to understand the concept of biocompatibility and its evolution. Students are able to understand the concept of the body's reaction to foreign objects and cell-material interactions. Students are able to understand the concept of pre-clinical testing of biomaterials in vitro and in vivo Students are able to understand the properties and characteristics of biomaterials and their applications in the medical field. 	
Content	Biomaterials and their types, the body's response to foreign substances, cell-material interactions, material biocompatibility, pre-clinical tests of biomaterials, metal biomaterials, polymer biomaterials, ceramic biomaterials, and composite biomaterials.	

Examination forms	Written Exam	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on projects assignment and presence (60%), and semester exam (40%)	
Reading list	 Sari Y.W., Nuzulia N.A., Saputra A., Abdurrahman, Pengantar Biomaterial untuk Aplikasi Kesehatan Ratner D.B. Hoffman S.A., Schoen F.J., Lemons J.E., Biomaterial science: an introduction to materials in medicine. 	

Module Handbook – Material Characterization Methods

Module designation	Material Characterization Methods		
Semester(s) in which the module is taught	5 th (fifth)		
Person responsible for the module	Dr. Siti Nikmatin, M.Si		
Language	Bahasa Indonesia		
Relation to curriculum	Compulsory in the third year (5 th fifth semester) bachelor's degree		
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.		
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, 100 minutes lab work, in total is 14 weeks per semester, excluding mid exam and final exam.		
Credit points	3 SCH x (1.67) = 5.01 ECTS		
Required and recommended prerequisites for joining the module	-		
Module objectives/intended learning outcomes	 Students master the concepts, theories and methods various material characterization techniques, includin electrical, thermal, optical, microstructural, an mechanical properties. Students are able to process and analyze data generate by material characterization techniques. 		

	1.	Fundamentals of measurement and measurement techniques, Standard and specific calibration methods on advanced research instrumentation of material characterization,
	2.	Basic principles of AAS, AES and GCMS Essential components in AAS, AES and GCMS Processing and analysis of AAS, AES and GCMS data, X-ray interaction with matter
	3.	Crystal structure and amorphous material, the principle of diffraction in the material, and the crystal orientation of the material, XRD data processing and analysis,
	4.	Overview of electromagnetic waves (ultraviolet, visible light, and infrared), Basic Principles and critical components in UV-Vis, Processing and analysis of UV-Vis's data.
	5.	Basic principles and essential components in FTIR FTIR data processing and analysis, Fundamentals of thermodynamics (endothermic, exothermic reactions, phase changes, boiling and melting points of materials),
Content	6.	Basic principles of DTA and DSC Measurement data analysis with DTA and DSC, Basic Principles of Fluorescence and thermoluminescence spectroscopy, Processing and analysis of fluorescence and thermoluminescence spectroscopy data
	7.	Basic Principles of Optical and electron microscopy, the source of electrons in the SEM-TEM tool, the working principle of the morphology testing technique with an optical microscope and SEM-TEM, the technique of determining grain size with a microscope
	8.	The basic principles of measuring the properties of electricity and magnetism.
	9.	Measurement data analysis, Brownian motion, potential Zeta, Mie and Rayleigh Scattering
	10.	The basic principles and measurement analysis of PSA, BET
	11.	Overview of gamma radiation with materials Types and basic principles of radiation testing on biomedical materials Processing and analysis of radiation test results data

	12. The response of the material in receiving deformation is based on the direction of the force Tensile, elongation, impact, modulus strength and hardness
Examination forms	Written exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (35%), mid semester exam and end semester exam (65%).
Reading list	 ASM Handbook, Volume 10, Material Characterization Igor A. Kaltashow, Stephen J. Eyles, Mass Spectrometry in Biophysics, Wiley Interscience B.D. Milbrath, A.J. Peurrung, M. Bliss, dan W.J. Weber (2018): Radiation detector materials: An Overview. Journal of Materials Research, 23(10) Nadezhda L. Aluker, Yana M. Suzdal'tseva, Anna S. Dulepova, dan Maria E. Herrmann (2016): Thermoluminescent Detectors for Surveillance Studies of Radiation Exposure of The Population, Science Evolution, 1(2) Paul F. Fewster (2014): A new theory for X-ray diffraction. Acta Crystallographica Section A Foundations and Advances. A70, 257–282 Basic Knowledge for using the SEM (https://www.jeol.co.jp/en/applications/pdf/sm/sem_atoz_a II.pdf)

Module Handbook – Sensors and Transducer

Module designation	Sensors and Transducer
Semester(s) in which the module is taught	5 th (fifth)
Person responsible for the module	Dr. Irmansyah, MSi
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the third year (5 th fifth semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, 100 minutes lab work, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	-
Module objectives/intended learning outcomes	 Students are able to describe the classification, working mechanism, and characteristics of sensors and actuators. Students can analyze various physical phenomena, which are the concepts of various sensors and actuators. Students are able to read and interpret data sheets of various types of sensors. Students are able to design and assemble simple sensor system instruments.
Content	Sensor Terminology, Shift Sensors, Stress and Strain, Force and Torque Sensors, Pressure Sensors, Vibration and Acceleration Sensors, Fluid Flow Sensors, Temperature Sensors, Light Sensors, Motion Sensors, Acoustic Sensors, Biosensors, Chemical Sensors, Proximity Sensors, and Smart Sensors.
Examination forms	Written exam

Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on project assignment and presence (76%), mid semester exam (24%), and end semester exam (24%)
Reading list	 Nathan Ida, 2020. Sensors, Actuators and their Interface Multidisciplinary. Institution of Engineering and Technology J. Fraden, "AIP Handbook of Modern Sensors, Physics, Designs and Applications," American Institute of Physics.

Module Handbook – Solid State Physics

Module designation	Solid State Physics
Semester(s) in which the module is taught	6 rd (Sixth)
Person responsible for the module	Dr Siti Nikmatin
Language	Bahasa Indonesia
Relation to curriculum	Compulsory course in the third year (6 rd semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	-

	1. Students can describe and explain the concept of crystal structure theory
	 Students are able to formulate the crystalline phase in solids
	3. Students are able to understand and explain the concept of lattice diffraction
	4. Students are able to explain lattice vibrations and identify the dispersion relations of monatomic and diatomic 1D lattice sets and are able to identify optical and acoustic modes
	5. Students can describe lattice vibrations
	6. Students are able to describe the conductivity model and the assumptions used.
Module objectives/intended learning outcomes	7. Students are able to understand the electrical conductivity and the ratio of the thermal and electrical conductivity of solids.
	8. Students can explain phonon interactions and impurities and understand related models.
	<i>9. Students can understand the importance of the concept of the density of states.</i>
	10. Be able to understand the mechanism of the formation of energy bands in solids.
	11. Students are able to understand the mechanism of the formation of energy bands in solids.
	12. Students are able to describe the concept of density functional theory based on the Hohenberg-Kohn and Kohn-Sham theorems.
	13. Students are able to explain the Basis Set concept of molecules in solids.

Content	Solid state physics is a subject given in semester 7, is a science that applies and identifies concepts related to the crystal structure of solids, wave diffraction in the reciprocal lattice, bonds and energy in crystalline materials, elastic constants and dynamics of lattice vibrations, thermal conductivity and heat of solid matter (Dulong- Petit, Einstein and Debye models), semiconductor Lorentz model, Drude model, phonon-phonon interaction, Umklapp process, Bloch function, and periodic potential model, Hall effect, molecular orbital theory, tight binding model). Energy bands and their relation to semiconductors, magnetic properties in solids, and introduction to Functional Density Theory, dynamics of monatomic and diatomic 1D lattice vibrations, phonon dispersion relations, acoustic and optical modes
Examination forms	Written Exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (20%), mid semester exam (40%), and end semester exam (40%)
Reading list	 M. Ali Omar, Elementary Solid-State Physics, 1993 Addison Wesley N. Ashcroft, D. Mermin. Solid State Physics. New York, Holt, Rinehart and Winston. 1976 P. Yu dan M. Cardona. Fundamentals of Semiconductors. Springer. Fourth Edition. 2010 C Kittel, "Introduction of Solid-State Physics."

Module Handbook – Theory of Relativity

Module designation	Theory of Relativity
Semester(s) in which the module is taught	6 th (sixth)
Person responsible for the module	Prof. Husin Alatas
Language	Bahasa Indonesia
Relation to curriculum	In-depth course in the third year (6th semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 100 minutes lectures per week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	2 SCH x (1.67) = 3.34 ECTS
Required and recommended prerequisites for joining the module	-

	1. Students are able to understand the importance of the formulation of the Theory of Relativity
	2. Students are able to formulate Newtonian mechanics and the Galileo transformation in relation to the definition of an inertial frame of reference
	3. Students are able to understand and master Einstein's postulates for the Special Theory of Relativity, Lorentz transform derivation from the principle of invariance of incident distances, consequences of Einstein's postulates: time dilation, length contraction, sum of velocity and twin paradox
Module objectives/intended	4. Students are able to understand and master the formulation of covariant Newtonian mechanics
learning outcomes	5. Students are able to understand and master the importance of reformulating Maxwell's equations in covariant form and are skilled in manipulating tensor notation
	6. Students are able to understand and master the principles that underlie the birth of the General Theory of Relativity
	 7. Students are able to understand and master the implementation of non-Euclidean geometric concepts and their application to Einstein's concept of gravity 8. Students are able to understand and master the technique of solving the Einstein field equations for several physical cases and applications in the fields of astrophysics and cosmology.
Content	Postulates of the Special Theory of Relativity; Newtonian Paradigm; Consequences of the Postulates of the Special Theory of Relativity; Relativistic Mechanics; Covariant Maxwell's equations; The Equivalence Principle of the General Theory of Relativity; Manifolds and Riemann Geometry; Einstein's Field Equations; Schwarzschild and Kerr Solutions; Application of the General Theory of Relativity in Astrophysics and Cosmology.
Examination forms	Written exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (20%), mid semester exam (40%), and end semester exam (40%)

Reading list	1. Hobson, MP et.al. General Relativity: An Introduction for Physicist, Cambridge University Press, 2006
	2. Ferraro, R. Einstein's Space-Time: An Introduction to Special and General Relativity, Springer Science, 2007
	3. Hartle, J.B, Gravity: An Introduction to Einstein's General Relativity, Pearson, 2002

Module Handbook – Advanced Quantum Physics

Module designation	Advanced Quantum Physics
Semester(s) in which the module is taught	6 th (sixth)
Person responsible for the module	Prof. Dr. Tony Sumaryada
Language	Bahasa Indonesia
Relation to curriculum	Compulsory course in the third year (6 th semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 119 hours per semester, which consists of 150 minutes lectures per week, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	3 SCH x (1.67) = 5.01 ECTS
Required and recommended prerequisites for joining the module	Quantum Physics

	 Students are able to understand the formulation of quantum mechanics in the formalism of Hilbert space and its dynamics.
	2. Students are able to represent angular momentum and spin operators in the matrix representation.
	3. Students are able to formulate the sum of angular momentum
	4. Students are able to formulate problems of quantum systems with time-independent disturbance fields
learning outcomes	5. Students are able to formulate atomic problems with many electrons
	6. Students are able to understand and explain the principle of variation in quantum mechanics
	7. Students are able to understand the method of solving the Schrodinger equation for many-electron systems
	8. Students are able to understand various interpretations of quantum
	9. Students are able to understand the basic concept of quantum entanglement and its implications.
Content	The formalism of quantum mechanics in Hilbert space, quantum dynamics, representation of operators in matrices, summation of angular momentum, time-independent perturbation theory, real atoms, many-electron atoms, Hartree-Fork approach, density functional theory approach, quantum interpretation, and quantum entanglement and its implications.
Examination forms	Written Exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on mid semester exam (50%), and end semester exam (50%)
Reading list	 S. Gasiorowicz. (1995). Quantum Physics. 2nd, John Wiley & Sons. David J. Griffiths. (2005). Introduction to Quantum Mechanics. 2nd, Pearson Education.

Module Handbook – Atomic and Molecular Physics

Module designation	Atomic and Molecular Physics
Semester(s) in which the module is taught	6 th (Sixth)
Person responsible for the module	Dr. Setyanto Tri Wahyudi, M.Si
Language	Bahasa Indonesia
Relation to curriculum	Compulsory course in the third year (6 th semester) bachelor's degree
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 100 minutes lectures per week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	2 SCH x (1.67) = 3.34 ECTS
Required and recommended prerequisites for joining the module	Mathematical Physics, Advanced Mathematical Physics, and Quantum Physics.
Module objectives/intended learning outcomes	 Students can explain the development of atomic and molecular theory. Students can explain the theory of atomic structure in general. Students can explain the quantum physics theory of the hydrogen atom (one electron atom). Students can explain the theory of quantum physics of atoms with more than one electron. Students can explain the theory of ionic and covalent molecular bonds. Students can explain the theory of energy levels of molecular vibrations. Students can explain the theory of molecular rotational energy levels. Students can explain the theory of molecular electronic spectra.

Content	Development of atomic and molecular theory, general atomic structure theory, quantum physical theory of the hydrogen atom (one-electron atom), quantum physical theory of atoms with more than one electron, theory of ionic and covalent molecular bonds, theory of energy levels of molecular vibrations, theory of molecular vibrations molecular rotational energy, and the theory of the electronic spectrum of molecules.
Examination forms	Written Exam
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (60%), mid semester exam (20%), and end semester exam (20%)
Reading list	 Luciano Colombo, "Atomic and Molecular Physics: A primer" University of Cagliari, Italy, IOP Publishing Ltd 2019. Mekanika Kuantum Molekul: Struktur Elektronik Atom dan Molekul, Rustam E. Siregar Departemen Fisika, FMIPA UNIVERSITAS PADJADJARAN An Introduction to Atomic-, Molecular- and Quantum-Physics, Wolfgang Demtröder Springer-Verlag Berlin Heidelberg 2006, 2010

Module Handbook – Nanophysics

Module designation	Nanophysics	
Semester(s) in which the module is taught	6 th (Sixth)	
The person responsible for the module	Prof. Dr. Akhiruddin	
Language	Bahasa Indonesia	
Relation to curriculum	Compulsory course in the third year (6 th semester) of bachelor's degree	
Teaching methods	100 minutes of lectures and 120 minutes structured activities per week.	
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 100 minutes lectures per week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.	
Credit points	2 SCH x (1.67) = 3.34 ECTS	
Required and recommended prerequisites for joining the module	-	
Module objectives/intended learning outcomes	 Students are able to understand the field of nanoscience and nanotechnology. Students are able to understand the quantum confinement effect. Students are able to understand the concept of electronic state density and band structure. Students are able to understand the nanomaterial characteristics. Students are able to understand various nanomaterials synthesis methods. Students are able to understand and explain several examples of nanomaterial structures, especially carbon- based nanomaterial. Students are able to explain various applications of nanotechnology and nanomaterial. 	

Content	Field of nanophysics and nanomaterials, Quantum confinement effect, Band structure of nanoparticles, Density of electronic states of nanoparticles, characteristics of nanoparticles (0D/3D, 1D, and 2D), phenomena and properties of nanomaterials, synthesis of nanomaterials (Bottom-up and Top-down), characterization of nanomaterials, applications of nanomaterial and nanotechnology (electronics, energy, and health).	
Examination forms	Written Exam	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (50%), mid semester exam (30%), and end semester exam (20%)	
Reading list	 Edward L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, Second Edition, 2006 WILEY-VCH Verlag GmbH & Co. KGaA. Online ISBN:9783527618972. DOI:10.1002/9783527618972 B S Murty, P Shankar, Baldev Raj, B B Rath, James Murday, Textbook of Nanoscience and Nanotechnology, Springer, 2013, e-ISBN 978-3-642-28030-6, DOI 10.1007/978-3-642-28030-6 Klaus D. Sattler (Editor), Handbook of Nanophysics: Principles and Methods, 1st Edition, CRC Press, 2017, ISBN 9781138117853 Takaaki Tsusumi, Hiroyuki Hirayama, Martin Vacha, Tomoyasu Taniyama, Nanoscale Physics for Materials Science, CRC Press 2010. ISBN 978-1-4398-0059-1 	

Module Handbook – Nuclear and Particle Physics

Module designation	Nuclear and Particle Physics	
Semester(s) in which the module is taught	6 th (Sixth)	
Person responsible for the module	Prof. Dr. R. Tony Ibnu Sumaryada Wijaya Puspita, M.Si,	
Language	Bahasa Indonesia	
Relation to curriculum	Compulsory course in the third year (6 th semester) bachelor's degree	
Teaching methods	100 minutes lectures and 120 minutes structured activities per week.	
Workload (incl. contact hours, self-study hours)	Total workload is 79 hours per semester, which consists of 100 minutes lectures per week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.	
Credit points	3 SCH x (1.67) = 5.01 ECTS	
Required and recommended prerequisites for joining the module	-	

	1. Students understand the importance of the role of Nuclear in various aspects of life.	
Module objectives/intended learning outcomes	2. Students are able to describe the Standard Model of elementary particles and types of fundamental interactions and the principle of symmetry and are able to solve related physics problems	
	3. Students are able to describe the basic physical quantities in nuclear (nuclear properties) including nuclear radius, spin, magnetic dipole moment, energy, nuclear stability.	
	 Students understand Nuclear Structure and Model and Stability. Binding energy, Liquid drop Model, Fermi Model, Magic Number, Nuclear Shell Model and solve related problems. 	
	5. Students are able to understand the concept of Nuclear Reaction (fission, fusion, and decay) and its applications.	
	6. Students are able to understand the concept of nuclear energy generation and its use for human life.	
	7. Students are able to understand the working concept of various kinds of nuclear and elementary particle detectors as well as Nuclear Physics Laboratory Facilities and elementary particles	
Content	Matter includes nuclear (core) and subatomic particles and the elementary interactions responsible for their stability. This course also equips students to recognize the application of nuclear and particle physics in everyday life, such as energy problems, health, determining the age of objects (carbon dating), research and others. The material includes nuclear (nucleus), subatomic particles, and fundamental interactions. Responsible for its stability. This course also equips students to recognize the applications of nuclear and particle physics in everyday life, such as energy problems, health, determination of the age of objects (carbon dating), research and others.	
Examination forms	Written Exams	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on assignment and presence (40%), mid semester exam (30%), and end semester exam (30%)	

	1. Jean-Louis Basdevant, Fundamentals in Nuclear Physics: From Nuclear Structure to Cosmology, Springer; 2005
Reading list	 Das, Ferbel, Introduction to Nuclear and Particle Physics, World Scientific Publishing Company; 2nd edition (December 23, 2003).
	3. Donald Perkins, Introduction to High Energy Physics, Cambridge University Press; 4 edition (April 24, 2000).

Module Handbook – Scientific Writing Method Physics

Module designation	Scientific Writing Method in Physics
Semester(s) in which the module is taught	6 th (Sixth)
Person responsible for the module	Dr. Yessie Widya Sari
Language	Bahasa Indonesia
Relation to curriculum	Compulsory course in the third year (6 th semester) bachelor's degree
Teaching methods	Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods
Workload (incl. contact hours, self-study hours)	Total workload is 40 hours per semester, which consists of 50 minutes lectures per week for 14 weeks, 60 minutes structured activities per week, 60 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	1 SCH x (1.67) = 1.67 ECTS
Required and recommended prerequisites for joining the module	-

	1. Students are able to understand the urgency of scientific writing.	
	2. Mahasiswa dapat memahami etika dalam penelitian dan penulisan karya ilmiah	
	3. Students are able to understand estoque in research and scientific writing.	
	4. Student are able to understand the systematic of scientific writing.	
	5. Students are able to further understand grammar technique used in scientific writing.	
Module objectives/intended learning outcomes	6. Student are able to understand number writing technique, symbol, term, and scientific nomenclatures	
	7. Students are able to understand illustration placement technique	
	8. Mahasiswa dapat memahami teknik penempatan ilustrasi	
	9. Student are able to understand illustration placement technique	
	10. Mahasiswa dapat memahami teknik pengutipan pustaka dan penyusunan daftar pustaka	
	11. Students are able to understand the technique of citing and compiling a bibliography.	
Content	Ethics in research and writing of scientific papers; systematics of scientific work; language techniques; writing of numbers, symbols, terms, and scientific nomenclature; illustration placement; bibliography citing and compilation of bibliography	
Examination forms	Writing exam and Project Based exam	
Study and examination requirements	Minimum attendance at lectures is 80% (according to IPB regulation). Final score is evaluated based on final exam (40%), and project-based exam (60%)	
Reading list	Pedoman Penulisan Karya Ilmiah Tugas Akhir Mahasiswa Edisi Ke- 4. IPB Press. 2019. ISBN: 978-623-256-142-7	

Module Handbook – Enrichment Courses

Module designation	Enrichment Course	
Semester(s) in which the module is taught	6 th (sixth) and 7 th (seventh)	
Person responsible for the module	Dr. Faozan, M.Si	
Language	Bahasa Indonesia / English	
Relation to curriculum	Compulsory in the second year (6 th & 7 th semester) bachelor's degree	
Teaching methods	EC by course and EC by activities (program) Detail guideline: <u>https://drive.google.com/file/d/1cf-drKdy-</u> wdPW2MOs2Uc5VAR1k2XhTxF/view?usp=drive_link	
Workload (incl. contact hours, self-study hours)	Total workload is 945 hours.	
Credit points	21 SCH x (1.67) = 35.07 ECTS	
Required and recommended prerequisites for joining the module	Have completed major courses in semesters 1 - 5	

	1.	able to apply logical, critical, systematic and innovative
		thinking in the context of developing or implementing
		science and technology that pays attention to and applies
		humanities values in accordance with his/her field of
		expertise;
	2.	able to demonstrate independent, quality and
		measurable performance;
	3.	able to examine the implications of the development or
		implementation of science and technology that pay
		attention to and apply humanities values in accordance
		with their expertise based on scientific principles,
		procedures and ethics in order to produce solutions, ideas,
		designs or art criticism;
	4.	able to make appropriate decisions in the context of
		solving problems in the field his expertise, based on the
		results of information and data analysis;
	5.	able to maintain and develop work networks with
		supervisors, colleagues, and peers both inside and outside
	6	the institution;
Module objectives/intended	6.	able to carry out self-evaluation processes for work
learning outcomes		groups under ms/ner responsibility answer, and be able to
	7	able to document store secure and retrieve data to
	/.	ensure validity and prevent plagiarism
	8.	Development of a growth mindset and orientation toward
		future practices;
	9.	Data literacy, the ability to read, analyze, and utilize data
		and information (big data) in the digital world;
	10.	Technology literacy, the ability to understand how
		machines work and the application of technology (coding,
		artificial intelligence, and engineering principles);
	11.	Human literacy, the ability to understand humanities,
		communication, and design;
	12.	21st-century skills fostering HOTS (Higher Order Thinking
		Skills), including Communication, Collaboration, Critical
		Thinking, Creative Thinking, Computational Logic,
		Compassion, and Civic Responsibility;
	13.	Understanding the era of Industry 4.0 and its
		developments;
	14.	Comprehension of knowledge to be practiced for the
		common good at local, national, and global levels;

	15. Achievement of learning outcomes and other additional		
	competencies.		
Content	 EC/SC Multi-Activity program aims to provide a multi-activity and multi-channel learning space within the framework of flexibility and personalized learning for students. Additionally, this learning space has the following objectives and benefits: 1. To develop insights and hone critical and creative thinking skills in working across disciplines and with students from diverse backgrounds to solve complex problems; 2. To provide opportunities for cultivating leadership, soft skills, and character while innovating and collaborating with various parties to enhance the quality of learning; 3. To strengthen Life-Based Learning to produce outstanding graduates who are agile and adaptive to change by accommodating growth mindset, hard skills, soft skills, character, life skills, networking, and experience; 4. To encourage students to gain learning experiences by taking credits outside their study programs and/or institutions; 5. To support transdisciplinary learning as a collective approach, utilizing knowledge, expertise, and analytical capabilities to understand larger and more complex systems; 6. To internalize professional attitudes and work culture required for the business world, industry, and/or workforce; 7. To encourage study programs to implement student-centered learning, prioritizing team-based projects and/or case methods, along with related assessments. 		
Examination forms	Project based learning		
	Availability of activity logbook Completeness document assignment Participation (Presence and Activeness)		
Study and examination	Cooperation		
requirements	Report activity Presentation		
	Detail guideline: <u>https://drive.google.com/file/d/1cf-drKdy-</u> wdPW2MOs2Uc5VAR1k2XhTxF/view?usp=drive_link		

Module Handbook – Capstone in Physics I

Module designation	Capstone in Physics I		
Semester(s) in which the module is taught	6 th (sixth)		
Person responsible for the module	Dr. Faozan, M.Si		
Language	Bahasa Indonesia		
Relation to curriculum	Compulsory in the third year (6th semester) bachelor's degree		
Teaching methods	360 minutes structured activities per week, 360 minutes individual study per week		
Workload (incl. contact hours, self-study hours)	Total workload is 190 hours per semester, which consists of 360 minutes structured activities per week, 360 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.		
Credit points	4 SCH x (1.67) = 6.68 ECTS		
Required and recommended prerequisites for joining the module	Have completed major courses in semesters 1 - 5		
Module objectives/intended learning outcomes	 Students are able to conduct scientific literature searching and able to manage scientific reference resources. Students are able to formulate the state of the art of a research topic. Students are able to design simple research Students are able to formulate simple research hypotheses Students are able to master the tools or methods used in research Students are able to write research proposals according to scientific writing rules. 		
Content	The course is in the form of project-based learning (PBL) which is the culmination of knowledge and skills from various courses that have been studied from the first to third year. Physics Capstone 1 focuses on exploring problems and research ideas as well as mastery of the tools or methods needed in research. The output of Physics Capstone 1 is a scientific document in the form of literature study results, the state of the art of a research topic, research methods, and research design. The document can be part of the Final Project Proposal that will be presented at the Colloquium course activity. Recording activities related to this course in the form of a log book is mandatory to verify the achievement of learning hours.		
------------------------------------	---		
Examination forms	Project based learning		
Study and examination requirements	Availability of activity logbook - 15% Completeness document assignment - 25% Participation (Presence and Activeness) - 10% Cooperation - 10% Report activity - 30% Presentation - 10%		
Reading list	Main : Scientific journal Supporters : Textbook Related resources		

Module Handbook – Thematic-Community Service

Module designation	Thematic-Community Service
Semester(s) in which the module is taught	7 th (sixth)
Person responsible for the module	LPPM IPB
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the fourth year (7th semester) bachelor's degree
Teaching methods	Experiential, project-based, and collaborative learning
Workload (incl. contact hours, self-study hours)	Total workload is 190 hours per semester, which consists of 360 minutes structured activities per week, 360 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	4 SCH x (1.67) = 6.68 ECTS
Required and recommended prerequisites for joining the module	Have completed major courses in semesters 1 - 6
Module objectives/intended learning outcomes	 Able to identify, plan, implement, and evaluate community empowerment programs in the broader agricultural and environmental sectors in an integrated manner (multi- and interdisciplinary across professions at IPB); Demonstrates high levels of care and commitment, skilled in communication, and able to collaborate across professions in addressing current societal issues; Capable of developing collaborative networks to solve problems and meet the needs arising from the dynamics of current societal life; Able to provide alternative solutions for development challenges, particularly in the areas of broad-scale agriculture, environment, and community empowerment.
Content	Thematic-Community Service (KKNT) is an educational program where the primary activities take place outside the campus, offering students hands-on learning experiences by immersing them in community life. In this program, students collaborate directly with the community to identify, analyze, and address development challenges. The approach is integrated and interdisciplinary, involving collaboration across various professions at IPB.

Examination forms	Project based learning
Study and examination requirements	Availability of activity logbook
	Completeness document assignment
	Participation (Presence and Activeness)
	Cooperation
	Report activity
	Presentation
	Detail Guideline:
	<u>https://drive.google.com/file/d/1RIr6hZ946Li261pW7CrGf_j-</u> <u>1auYQfMW/view?usp=drive_link</u>

Module Handbook – Capstone in Physics 2

Module designation	Capstone in Physics 2
Semester(s) in which the module is taught	7/8 th (seventh / eighth)
Person responsible for the module	Dr. Faozan, M.Si
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (5th semester) bachelor's degree
Teaching methods	360 minutes structured activities per week, 360 minutes individual study per week
Workload (incl. contact hours, self-study hours)	Total workload is 190 hours per semester, which consists of 360 minutes structured activities per week, 360 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	4 SCH x (1.67) = 6.68 ECTS
Required and recommended prerequisites for joining the module	Have completed major courses in semesters 1 - 6
Module objectives/intended learning outcomes	 Students are able to design simple research or projects Students are able to master the tools or methods used in research/project and are able to use them to obtain research data. Students are able to create research/project data visualizations Students are able to analyze research/project data. Students are able to write the results of research/projects in the form of scientific papers. Students are able to disseminate research/project results in Capstone Festival activities.
Content	The course is in the form of project-based learning (PBL) which is the culmination of knowledge and skills from various courses that have been studied from the first to third year of a Bachelor's program. The output of the Physics Capstone Project activity can be in the form of research results, development of a model, prototype tools/devices/materials, and others. The output of the Capstone Project can be part of the Final Project document (Thesis/Final Year Project) presented at the Final Project Seminar activity.
Examination forms	Project based learning

Study and examination	Availability of activity logbook: 15%
	Completeness document assignment: 20%
	Participation (Presence and Activeness): 10%
	Cooperation: 10%
	Report activity: 20%
	Presentation: 10%
	Poster/Prototype: 15%
Reading list	Main :
	Scientific journal
	Supporters :
	Textbook
	Related resources

Module Handbook – Colloquium

Module designation	Colloquium
Semester(s) in which the module is taught	7 th (eighth)
Person responsible for the module	Dr. Faozan, M.Si
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (6th semester) bachelor's degree
Teaching methods	90 minutes structured activities per week, 90 minutes individual study per week
Workload (incl. contact hours, self-study hours)	Total workload is 45 hours per semester, which consists of 90 minutes structured activities per week, 90 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	1 SCH x (1.67) = 1.67 ECTS
Description of a sector sector dead	
prerequisites for joining the module	Have completed major courses in semesters 1 - 6
Module objectives/intended learning outcomes	 Have completed major courses in semesters 1 - 6 Students are able to compile and present material clearly and effectively. Able to communicate well in front of an audience, both verbally and visually Students are able to disseminate the results of research or projects in Final Project Seminar activities Students have a deep understanding of the topics or themes discussed in the seminar
Required and recommended prerequisites for joining the module Module objectives/intended learning outcomes Content	 Have completed major courses in semesters 1 - 6 Students are able to compile and present material clearly and effectively. Able to communicate well in front of an audience, both verbally and visually Students are able to disseminate the results of research or projects in Final Project Seminar activities Students have a deep understanding of the topics or themes discussed in the seminar In this course, students make research proposals for the final project and present them in front of supervisors, examiners, and other fellow students. The review of the examiners and feedback from the ongoing discussion will be used to refine the student's research activity plan and final project.

Study and examination requirements	 Systematics and writing techniques according to guidelines Introduction (title, problem formulation, objectives) and research hypothesis Substance Presentation of the research plan Discussion of the research plan (State of the Art, Research Objectives, Research Methods, Foundations of Physics Theory)
Reading list	Main : Scientific journal Supporters : Textbook Related Resources

Module Handbook – Seminar

Module designation	Seminar
Semester(s) in which the module is taught	8 th (eighth)
Person responsible for the module	Dr. Faozan, M.Si
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (8th semester) bachelor's degree
Teaching methods	90 minutes structured activities per week, 90 minutes individual study per week
Workload (incl. contact hours, self-study hours)	Total workload is 45 hours per semester, which consists of 90 minutes structured activities per week, 90 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	1 SCH x (1.67) = 1.67 ECTS
Required and recommended prerequisites for joining the module	Have completed major courses in semesters 1 - 7
Module objectives/intended learning outcomes	 Students are able to compile and present material clearly and effectively. Able to communicate well in front of an audience, both verbally and visually Students are able to disseminate the results of research or projects in Final Project Seminar activities Students have a deep understanding of the topics or themes discussed in the seminar
Content	In this lecture, students explained the results of the research they had conducted to test their validity and feasibility scientifically and their suitability with KKNI level 6 and the Learning Outcome Program from the IPB Physics Undergraduate Program in front of supervisors, examiners and other fellow students. Reviews from examiners are used to improve the Final Project.
Examination forms	Project based learning
Study and examination requirements	Presentation of research results Discussion of research results

Reading list	Main :
	Scientific journal
	Supporters :
	Textbook
	Related resources

Module Handbook – Final Year Project

Module designation	Final Year Project
Semester(s) in which the module is taught	8 th (eighth)
Person responsible for the module	Dr. Faozan, M.Si
Language	Bahasa Indonesia
Relation to curriculum	Compulsory in the second year (8th semester) bachelor's degree
Teaching methods	360 minutes structured activities per week, 360 minutes individual study per week
Workload (incl. contact hours, self-study hours)	Total workload is 252 hours per semester, which consists of 540 minutes structured activities per week, 540 minutes individual study per week, in total is 14 weeks per semester, excluding mid exam and final exam.
Credit points	6 SCH x (1.67) = 10.02 ECTS
Required and recommended prerequisites for joining the module	Have completed major courses in semesters 1 - 7
Module objectives/intended learning outcomes	 Students are able to search scientific literature and to manage scientific reference resourses Students are able to formulate the state of the art of a research topic Students are able to design simple research Students are able to formulate simple research hypotheses Students master the tools and methods used in research and are able to use them to obtain research data Students are able to visualize research data and their tools Students are able to write research results in the form of scientific papers Students master the basics of physics theory that underlie research

Content	This course provides testing and assessment of the quality of all final project activities that have been completed by students as reflected in the form of a thesis document (Final Project) in accordance with KKNI level 6 and the Learning Outcomes Program of the IPB Physics Undergraduate Study Program. Testing of students' understanding of the basic concepts of physics related to their Final Project is carried out through a bachelor's exam in front of examiners appointed by the study program and is closed.
Examination forms	Project based learning
Study and examination requirements	Systematics and writing techniques according to guidelines Introduction (title, problem formulation, objectives) and research hypothesis Substance Data methods and analysis Drawing conclusions
Reading list	Main : Scientific journal Supporters : Textbook related resources